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FOREWORD

‘This publication includes individual papers of Damping ‘91 held February 13-15, 1991, San
Diego, California. The Conference was sponsored by the Wright Laboratory, Flight
Dynamics Directorate, Wright-Patterson Air Force Base, Ohio.

Itis desired to transfer vibration damping technology in a timely manner within the aecrospace
community, thereby, stimulating research, development and applications.
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The 'Society of Damping Technology' in Japan and the Activities

with the trends of the damping materials & technology in Japan

Abstract

The development activities of damping materials and their technologies in
Japan have been given an active life speedily in the past several years. As the
examples, the application of damping materials to the floor parel of motor
veiticle body and the wutilization of laminated damping steel sheets by various
industries in Japan will be reviewed in this report.

fhen, a report will be wade on the activiticc cf Cociety of Damping
Technology in Japan, a society which was inaugurated with the background
situation as indicated in iie above. Among various activities performed by the
society, a report will be made particularly on the outline of round robin test
which was conducted by the society. The report will be concluded by a summary
of U future trends to be realized in Japarn and the role of the society to be

played in the accomp!ishment of such targets.

1 Background
1.1. The Trends of Damping Materials in Japan

Stimulated by the enforcement of the regulations for the prevention of
environmental poilution by the Japanese Government, particularly of the noise
control regulations on motor vehicles, the application of damping materials has
been iupidly and widely spread among various industries in Japan. This trend
has been further enhanced by the fact that the industries become aware that the
reduction of vibration and noise in products will heighten the value of their

products in the market.

It has been real!ized that an appropriate damping effect can be achieved by
an addition of damping material ( such as free layer bonding type ) or by
replacement ( such as {aminated damping steel sheet )} without altering a

structure of product to a farge extent.

Damping mechanism and material characteristics, however, are not known well
hy the people in Japan except for a certain number of technical experts and
researchers. When an application of damping material is not made appropriately,

the damping effect could be reduced drastically or sometimes may bring an
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advers effect- and ends up with a wrong appraisal being cast upon it. Having
such a situation in the background, interests in damping materials among the

industries in Japan had been increased to an extent that Society of Damping

Technology tn Japan was inaugurated.

In the following, an application of damping material to the floor panel of
motor vehicle body and a utilization of laminated damping steel sheet by

various industries in Japan will be discussed.
1.2. Application of Damping Material to Floor Panel of Motor Vehicle Body

The historical trend of patent application in Japan for the damping
materials for a use of damping floor panels of motor vehicle body is shown in
Fig.1. ¥ Applications for materials used for sound absorption, sound
insulation and damping are included in this figure and the hatched portion in
it corresponds to the number of patent application for the damping materials.
it is obvious that the number of patent app!ication increased quite remarkablv
with the advent of1980. As stated in the above, the trend clearly shows the
heightening of technical interests in noise reduction obviously as the result

of the stimulation given by the enforcement of noise control regulation.

Fig. 2 shows the historical trend of noise level prevailing in the interior
of passenger cars produced and marketed in Japan. ‘' The chart shows that noise
reduction of some 8 dB(A) was realized in the past 10 years. This is obviously

the resuit of the application of noise reduction methads stated in the above.

Fig. 3 shows the proportions by weight of noise control materials used in

passenger cars. ‘¥

Approximately half of the weight is taken by the damping
materials. Majority of the damping materials indicated in this diagram are of

asphalt materials and will be bonded as free layers type.

While damping materials are used widely as the principal means for noise
control, materials having much better damping capabilities and |ighter weight
are being sought after earnestly with an aim of further reduction of noise
level as well as vehicie weight. In order to achieve such purposes, adoption
of composite materials and constrained layer damping system, foaming of damping

layer, etc. have already been tried.

1.3. Laminated Damping Steel Sheet

Fig. 4 shows the transition of production volume of laminated damping sheet
in Japan. ‘*’ A sudden increase in production is seen in the latter half of 80s.

After the enforcement of Phasell of the noise contro! regulation in '"83, the
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use ¢of laminated damping steel sheet for the stamp formed engine oi! pan
was commenced. The consumption of the material by the electric home appliance

industry was increased much after they adopted 1t for foaming the outer panel

of home washing machine.

Fig. 5 shows the breakdown by weight of the application cf this material for
various industries in Japan. > The consumption by the motor and electric
appliance industries are by far the largest, however, the applications for
building mater:ials and general machineries are being increase gradually.
Table 1 shows examples of laminated damping steel sheet application by various
industries. Obviously the materials are used for noise reduction of various

products.
2 Society of Damping Technology in Japan
2.1. lInaugurat:on of Society

As elaborated in the above, the application of damping materials for the
purpose of vibration and noise reduction has become very popular in Japan and
the market segments of products where the super great aquality is given by
damping materials have been expanded. But there are many subjects left unsolved
in the technical aspects of damping materials. Mutual recognition of such
problems, efforts in exploring their solutions and deepening peopfe’s
understanding in damping materials are essential for their popularization
and growth. Society of Damping Technalogy in Japan was inaugurated for the

achievement of those objectives.
2.2. General Policies of Society's Activities

The general pnlicies of this society’'s activities shall be;

“Activities will be centered in the industries, that is, the various seeds
and neecs for damping materials and technologies present in the industries
would be picked up widely and discussed in various aspects

- Public relaticns acrivities to be made by each member company in auxiliary
to the above activities will be permitted.

< Exchanee of 1nformations and conversations between and among makers, users

ard neutral arganations (such as research anstitutions, universities,
irstroment cotitticars, etc. ) on the subject of damping materials  wil
be promoted.

SRgrescoh vl tudy Wi i be made jointly  on the subjects relative to the
damping. Tne Ltudies w0 L1 be made principaliy by the study and technical
commrtteas a7 owngeine grouns subordinate fo those committees.
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- Publicity-activities on damping materials and technologies in such forms
as lecture class, tssutng manuals on measuring methods and wutilization

technologies.
2.3. Organization of Society

The society was inaugurated in July 1988 with the assistance of Tokyo
Metropolitan Industrial Technology Center. The society's secretariat is located
in that center. When the first general assembly of the society was held at the
time of inauguration, there were 39 corporate members, 6 private members and
3 special members making the total of 48 members. The society now has the total
of 145 members which consist of 120 coroorate, 22 private and 3 special
members. The number is still being increased by the enrollment of several

new members in every month.

Fig. 6 shows the main business activities and involvement n damping
materials by the society members. ¢’ About a half of the members are
in nonmetallic industries ( many are in polymer industries ) and belong to
the maker's side of damping materials. About 35 % are on the user’s side coming
from fairly wide range of industries. The rest are from the neutral
institutions and industries. In an aspect of involvement in damping materials,

it is recognized that members representing many sections are Iin a good

harmonious balance.

Fig. 7 shows the organization structure and activities of the society. Under
the executive committee formed by President, Vice President and chairman of
each committee, there are a secretariat and 5 committees ( 2 in business
handling and 3 in research and study ). There are number of working group
under the supervision of each research and study committee and the main

activities of the society are pursued by thcse people.

2.4, Activities of Research and Study Committees

Researches and studies in various subjects related to the damping materials
and technologies are actually carried out by 3 research and study committees

together with working groups ( W/G ) placed under them as shown in Fig. 7.

Domestic and international literature study W/GC collects the literaturi, and
papers on the damping materials and technologies issued widely ir Japan ang
cserseas countries mostly supplied by the members and put them in a data hase
Damping '89 W/G was tormed for the study of technical reports in Froceedings ot
Damping '83 Conference.
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Fig. 8 shows all measurement data obtained by the cantilever method. As the
ena clamping was not rigid enocugh, dispersal of damping characteristic in
bending mode of first order, where the influence of boundary condition s

fargest, is noted. It was also revealed that several! test data contained

problems due to data analysis by FFT (Fast Fourier Transform).

Fig. 9 shows a graph in which data with the above problems are all omitted.
The dispersal of damping characteristic measurement data is also made smaller.
The results of measurement by the members, except for data B of an criginal
steel beam having a small loss factor 7m-value , are fundamentafiy consistent
even though somewhat smaller data dispersal is still evident. Further study to

explore the cause of such dispersal is required.
3.3. Both End Free with Center Excitation Method

All measurement data obtained by both end free with center excitation method
are shown in Fig.10. An impedance head is instalied in this method on the
center portion where an excitation is applied. The exciting input and the
vibration response are measured by it. Data with fairly large dispersal are

included In this case, too.

Fig. 11 shows the excitation structure applied in the test. The method in
which a nut is used for clamping as shown in the figure will present a problem
in processing the damping layer at the portion where 1t is tightened by the
nut, for example, damping layer is cut or tighteped together with steel sheet.
In a method where an extension rod is used, it is noted that the bending mode
of steel beam, the main target of measurement, tends to be mixed with
unnecessary mode because the excitation structure is not instatled accurately

on the center of a test piece.

Fig.l2 shows the graph where the data containing probiems are ail omitted.
As in the cantijever method, all the measurements are consistent except ‘far

data B. Further exploration s also necessary to the cause of data dispersa:

st1tl left on this graph.
3.4, Summary

Al the results abtarned from the round robin test performed by the -
*hios tome, except for the data  of steel beam having seonlier
than §.01% and for the measurement data 1n which the cause of large dispersal

i

i oclarvfloed, are foune to be fundamentaily consistent  with  each  other. 1

means that as fong as  tre hasic ruites for  the measurement  are carefully
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observed, a dispersai of measurement can be minimjzed.

The values shown In Fig. 9 to 12 are consistent with each other and the fact
suggests that the variation due to different methods of measurement can also be

minimized.

However, some significant dispersal of data is still present even after
those data are screened and, therefore, further exploration is still required.
It 1s intended that supplementary tests on the dispersal of data on steel! beam
bonded with free layer damping material and round robin on laminatec damping
stee! sheet will be carried out in this year for the clarification of the

subjects and problems associated with the measurement methods.
4 Conclusion
4.1. Damping Materials and Technologies in Japan

(1) The product value of damping material has been recognized by the people

quite recently.

O They are very effective means for the reduction of noise and vibration.

@The spreading of use has been expedited by turning them into massproduction.

{2) New problems have appeared, on the contrary.

(DThe damping method alone can not, in many cases, insure a satisfactory
results.
@ lmprovements in the ratio of cost and weight vs 7 -value and in the total

performance of the materials are required.
{3) Under the circumstances, the future course shall be:
(DHigh performance

-High 71 -value {loss factor)
g
Free layer damping type - Constrained layer damping type,
Mater 1ol wmprovements, etc

“Multipie functions {multilayers, cemposition)

i

Herghtened s o cimpioyment teonng.ogy
Ststablionment F e 2istonge techrque
S Optinum dectan fratio ot cost and weight vs m-value)
CBur g L Aar e

4.2, Scciet, TR
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(1) Contribution to new developments in the damping by the study and research

works to be made on this subject.

(2) Engaging in the publicity activities of the damping materials and
technologies to expand the bottom layer of the needs.

(3) Grasping the needs and seeds through the exchanges of information and
conversations among and between the makers and users of damping matertals
and neutral institutions and industries, and feeding them back to all

members.
4.3. Final Conclusion

it is my great honor and pleasure to have been given an opportunity of
making a presentation on the trend of the study in damping and the
activities of Society of Damping Technology in Japan to this conference in the

presence of the most prominent people of the damping technologies in the world.

It is my strong personal belief that the society in Japan should also try to
enhance their international activities from now on. | believe the cooperation
of all the m&mbers present here will be honored and appreciated by all the

members of the society in Japan. Thank you very much.
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Integral Damping Treatment for Primary Aircraft Structures
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St. Louis, Missouri

ABSTRACT

The dynamic response of primary aircraft structure to buffeting flows,
high acoustic levels, and shock boundary layer interaction has led to
premature structural fatigue failures on current aircraft and is anticipated
to be a continuing problem in the future. Increasing structural
strength/stiffness can be a solution but this approach adds weight *o the
aircraft. Since the problem is dynamic response, increasing the amount of
damping in the structure can also be a solution. If integral damping is
considered as a part of the original design, a lighter weight design can
result. The application of integral damping to primary aircraft structure was
investigated and its effectiveness in controlling the primary structural modes
was assessed. The findings show the approach 1s feasible. A simulated
aircraft structure was tested with damping treatments applied. The most
promising damping concepts were then analytically evaluated on the F/A-18
vertical tail
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BACKGROUND

Adding significant damping to reduce the primary structural mode response
of 1ifting surfaces on aircraft can be challenging. The damping in these
modes during flight can be high due to the aerodynamics present. For example,
a 10 percent structural damping coefficient in the wing first bending mode is
typical. Thus, in order to reduce the response by half, this aerodynamic
damping level must be exceeded if the damping treatment is to be effective.

In 1987 as part of McDonnell Aircraft Company's Internal Research and
Deve lopment (IRAD) program, a combined analytical and experimental program to
explore the usage of viscoelastic damping in primary aircraft structure was
initiated. As part of this study, the F/A-18 horizontal tail was selected for
a primary structure damping treatment, Reference 1. The goal was to cut the
stabilator response in half. The damping treatment consisted of a stiff
graphite epoxy constraining layer adhesively bonded to the stabilator by 3M
ISD-113 viscoelastic material. Modal loss factors as a function of
temperature, as predicted by analysis and as measured by the experiment, are
shown in Figure 1. As can be seen from the figure, the measured damping is
considerably less than predicted from the analysis. The discrepancy between
measured and predicted values was attributed to only having a 60 percent bond
between the stabilator and patch. The difficulties of applying a stiff sheet
to a sculpted surface produced poor bonding, thus limiting the effectiveness
of the treatment.

24
Orthotropic Constraint Layer (t = 0.094 in, P, = 0.057 Ib/in>, t, = 0.021in)
20 —
Analysis
16 —
Modai
Damping 12 b~
Percent
81—
a- /] \"
L 1 | | J | S |

—0120 -80 40 0 40 80 120 160 200 240 280

Viscoselastic Teamperature - °F
Qr03-0870-1-D/ks

Figure 1. F/A-18 Horizontal Tall Constrained Layer Damping Treatment
Second Bending Mode

Curing 1988, as part of the above research program, several integral
damping treatment concepts for the F/A-18 vertical tail were analyzed,
Reference 2. The scope of the study was expanded to include not only the
constrained-layer damping but a'sy damped-link and tuned-mass damper
concepts. In general, the modal strain energy (MSE), other than that
concentrated at the root subport was evenly distributed throughout the skin
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structure. This type of MSE distribution is inhibitive to layered damping
treatments. The reason is that a constraining layer thickness that
effectively extracts MSE from the first bending mode is unlikely to be
successful on the first torsion mode. Also, the F/A-18's ta1l surface is not
conducive to a constrained-layer damping treatment due to the unevenness of
the composite skin. The conclusion from this study was that none of tne
constrained-layer damping treatments produce the desired levels of structural
damping. The main reason cited was that global modes require a global
treatment unless concentrations of MSE can be identified. The damped-1ink
failed to produce the required levels of damping because there was not enough
relative motion to add any significant damping. Damped-1links are analogous to
a shock-absorber and require that their end-points have large relative
displacements. The tuned-mass-dampers (TMD) did offer some promise; however,
the difficulty in practically applying this technology makes it the least
favorable alternative. Some of the inherent problems in the construction of
the TMD are creep and displacement control. For the F/A-18 vertical tail
application, the most critical parameters are the control of modes over a wide
frequency and temperature range. TMD designs are limited to one condition or
one modal effect.

In a parallel effort to design a damping treatment for the F/A-18
vertical tail, Reference 3, a scaled test article was developed to quickly and
economically demonstrate the viability of an add-on damping treatment concept.
Using this test article, viscoelastic tuned beam damper concepts were
demonstrated in controlling the primary modes. A response plot with and
without the viscoelastic tuned beam damper 1S shown in Figure 2. There is a
significant reduction in the response of the second mode with the damper
installed. The tuned beam damper was found to be effective in controlling the
important modes of the beam structure within the weight limitations.

60 :
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Test Article Weight: 7.8 Ib - odsan.
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Figure 2. Response Data for Cantilever Beam With and Without TMD




SUBSCALE STRUCTURE STUDY

T reviGus studies had adentaified many damping concepts and provided
SRR “7 Zamping of empennage structural response. In continuing this
FeeseaT 0 LT o LNrust wds Lo investigate, 1n a more controlled mdanner, the
srevooL . dentified damping concepts.  We used a subscale structure that
tne vibrational chardcteristics of the F/A-18 vertical tarl. Two
atments were tested using this subscale structure which 1s a simple

e o e

Cox Lo rown oan Figure 3. The box beam was of a single cell construction
Wit 2 wMinum structure.  The box beam 1S 48 inches long (of which 12
incne, 1 sdpport root) by 18 inches wide and 3 inches deep. A tLip mass
was o aloes o samulate the lowest frequencies of the F/A-18 vertical tarl.

Figure 3. Single Cell Box Beam Structural Contiguration

“; the single cell DOx beam test article, two damping concep*s were

v u:To !l d partial exterior add-on treatment and 4an integrally damped
ntert o tredtment.  Modal and dynamic response tests were performed to
ver s, croregsed levels of damping 1n the pramary (first bending and first
Tt oannoneconddry (panel) modes of the box beam.
. x was tested 1n g cantylevered configuration, Figure 4. A complete

Ddsr Dor mLilalosurvey wads conducted to establish frequencies, mode shapes, and
gampo- o voaes for the farst dending and torsion modes and the farst panel
e © o skins. The mode shapes, frequencies, and damping are shown 1n
R TS “arced vibration tests using random and sine excitation were
ST DIV Darong these tests transfer functions were measured at varigcus

cat r *he untredted strucCture to provide a baseline from which the

resp T Tne damped structure could be compared.
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Figure 4. Box Beam Vibration Test Setup

Frequency: 18.22 Hz Frequency: 54.76 Hz
Exciter Location: Station 37 Exciter Location: Station 37
A Damping Ratio (C/CC): 0.0281 B Damping Ratio (C/CC): 0.0075
ST Exciter Force Level: 6 Ib RMS Exciter Force Level: 6 Ib RMS

Frequency: 67.96 Hz Frequency: 79.20 Hz
Exciter Location: Station 37 Exciter Location: Station 37
C Damping Ratio (C/CC): 0.0051 D Damping Ratio {C/CC): 0.0066

Exciter Force Level: 6 Ibh RMS Exciter Force Level: 6 b RMS

Figure 5. Mode Shape Plots of the Primary Modes of the Baseline Box Beam
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vhe damping treatments tested consisted of: a stand-off damping treatment
applied to the outer skin, and an adhesive or "interface" damping layer
applied between the skin and spar-caps. The stand-off treatment consisted of
an 0.080 inch thick syntactic foam layer adhesively applied to the skin with a
0.005 1inch thick layer of 3M 468 and a double application of 0.005 inch thick
3M ISD-112 and 0.010 1inch thick soft aluminum constraining layer, Figure 6.
The treatment was applied in 12 by 15 inch sized patches to all four exposed
panel areas (top and bottom) on the box beam, Figure 7.

0.010in. Aluminum 0.005 in. 3M 112 Adhesive

llllllIIINI‘HIII[[[IHIIHIHUIUIIHUHIMHHHIIHIHHIUI_

0.080 in. Stand-Off Foam/ / \Skin

0.005 in. 3M 468 Adhesive

GP03-0670-6-D/dpt

Figure 6. Stand-Off Damping Treatment Design Configuration

— Stand-Off Damping
" Treatment Top and ™
Bottom Skins
ARy

GPQ3-067C 7-%as

Figure 7. Stand-Off Damping Treatment on the Box Beam

For the "interface" damping treatment, a 0.02 inch thick damping layer of
3M ISD-113 was bonded to the spar caps and then the skins were fastened in
place with adhesive, Figure 8. The previous damping treatment of the
stard-off material was not removed (the effect on the primary mode response
was minimal and the accelerance frequency response functions were 1ess noisy.)
The effects of tho two treatments were assumed to be additive, with the
initial effect known.
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Figure 8. Spar/Skin Joint Damping Treatment on the Box Beam

The vibration test results are summarized in Figure 9. These results
indicate that the exterior damping treatment is effective in reducing the
response of the primary structure, but it is even more effective in reducing
response in the local panel modes of vibration, Figure 10. An increase in
damping of 29 percent in the first bending mode was observed. This is a
significant increase in damping, considering that the baseline first bending
modal loss factor was 0.064. A 94 percent reduction and a 77 percent
reduction from baseline response in the first and second panel modes was
measured.

Baseline Stand-Off Interface
Mode
Shape Freq |Modal Loss | Freq |Modal Loss | Freq {Modal Loss
(Hz) Factor (H2) Factor (H2) Factor
First Bending Primary 18.22 0.056 17.87 0.092 19.30 0.103
First Torsion Primary 54.76 0.015 54.77 0.026 44.09 0.082
First Panel (Front Panel) 67.69 0.010 78.89 0.163 Not Determined
Second Panel (Back Panel} | 79.20 0.013 89.03 0.052 Not Determined

GP03-0670-9-Didpt
Figure 9. Box Beam Damping Test Results Summary
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Figure 10. Overlay of the Box Beam Baseline and External
Tape Random Response Transfer Function

The interface damping concept increased the damping in the first bending mode
and caused an additional 13 percent reduction in response or a 39 percent
reduction overall from the baseline response. The damping treatment was more
effective in damping the first torsion mode. The combined effects of the
standoff and the interface damping treatments caused an 82 percent reduction
from the baseline :,rsion mode response. A decrease in stiffness of 19.5
percent from the baseline torsion mode frequency was observed which was
observed by the decrease in the modal frequency from 54.77 Hz to 44.09 Hz.

F/A-18 VERTICAL TAIL APPLICATION

For the major case of interest here, the F/A-18 vertical tail is
subjected to severe buffeting forces at angles of attack above 20 degrees.
These buffeting forces cause very high dynamic response in the primary modes
of the tail; i.e., zero to peak amplitudes in excess of 500g have been
observed in flight. If the objective is to cut the buffet response in half,
then the level of structural damping in the vertical tail needs to be
significantly increased.

In order to investigate the effectiveness of damping to control the
vertical tail response during buffeting flow conditions, buffet response
caiculations were made using simulated levels of structural damping. The
simulated damping levels are assumed to come from the inclusion of the damping
treatment to the structure. Unsteady pressures during buffet were measured
during the wind tunnel program described in Reference 4. These pressures were
scaled to aircraft size and were used as the forcing function in the response
calculation. The scaling method and calculation approach are also described
in Reference 4. The results of the calculations are shown in Figure 11. The
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F/A-18 Vertical Tail Buffet Response Predictions
With/Without Damping
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data are presented in the form of bending and torsion moment PSD's for a 14

percent and 66 percent span station.

For the condition of Angle of Attack of

32 degrees, Dynamic Pressure of 347 psf and Mach Number of 0.6, the first
bending mode dominates inboard bending moment responses, and the second

bending mode dominates the outboard bending moment responses.

The overall RMS

response reductions, (Figure 12), suggest that 50 percent is the maximum that
can be obtained from a damping increase alone.

As previously mentioned,

analytical studies for primary structure

damping treatments for the F/A-18 vertical tail, Reference 2, had concluded
that constrained-layer damping could not be effectively included because the
structure itself was well designed with no areas of major strain energy

concentrations.
analyzed.

For the F/A-18 vertical tail application two treatments were
These consisted of a "hybrid" design of the solid spacer treatments

identified in Reference 2 and the interface concept which was tested using the

subscale structure.

Analyses of these two treatments required extensive

modification of the existing F/A-18 dynamic finite element model, shown in

Figure 13, in order to examine the damping treatments.

The damping concepts

were each individually modeled and extensively analyzed using the MSE Method,
Reference 5, for various damping configurations.
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elements be included between the spar cap and skin.
nodes was placed underneath the existing spar cap nodes.
the detail in the primary load path (skin through fastener to spar) needed to

analyze the problem sufficiently. 1In this concept, Figure 14, a portion of

1.1

O Inboard BM
O inboard TM
10 ® OQutboard BM
8 OQutboard TM
09 |
Normalized
RMS 08
Response
0.7 +
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05 1
0 0.1 0.2
Modal Damping
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Figure 12. RMS Damping Response Normalized to the Baseline RMS Response
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Figure 13. MSC/NASTRAN Dynamics Model of the
F/A-18 Vertical Taii

INTERFACE DAMPING CONCEPT

The interface damping treatment required that a layer of shear deformable

the beam shear load 1s transferred through the VEM located between the

moldiine skin and substructure.
fasteners,
were excluded from the model.

be discussed.

RAA~1N

Hence, an extra set of
This model reflects

The remaining load is carried through by the
In the study, fasteners were assumed to be either widely spaced or
Both variations of the interface concept will
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Figure 14. A Structurally Integrated Pessive Damping Concept

GP02-0870-18 D/ka

The interface layer was included into the detailed F/A-18 vertical tail
as a shear panel with the transverse degree-of-freedom (DOF) rigidly
constrained between the spar cap and skin element DOF. When the fastener
effects were included, they were modeled with rigid bar-type elements in all
DOF. The treated areas of the structure are shown in Figure 15. With
fasteners, this treatment only produced 1.5 percent and 2.0 percent MSE in the
first and second bending modes and nearly 8 percent MSE in the first torsion
mode of the vertical tail. Without the fasteners, 3 percent and 4 percent MSE
were produced from the first bending and second bending modes, respectively.
When no fasteners were assumed to be in place, the modal strain energy
produced in the first torsion mode increased to a peak MSE of 12 percent
(Figure 16), but at a subsequent loss in stiffness of the structure noticed as
a decrease 1in frequency, Figure i7.

SOLID SPACER DAMPING CONCEPT

Previously, this concept had been analyzed in two solid spacer
arrangements, Figure 18, and neither concept showed any significant benefit
for further evaluation. However, it was thought that a combination of tt: two
concepts, Figure 19, would show the necessary levels in damping that would
make this concept a candidate for future design application. Thus, the
damping treatment was evaluated.

The combination of the three damping layers allows for shear deformation
to take place in all three layers. If only the center-plane layer existed
with the two rigid spacers rigidly attached to the skins, then no relative
shearing could take place in that layer. This is because the vertical tail is
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Figure 15. Solid Spacer Damping Treatment Coverage on the Vertical Tall
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Figure 16. Interface Damping Treatment With No Fasteners
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Figure 17. Interface Damping Treatment With No Fasteners
Modal Frequency Dependence on Shear Modulus
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Figure 18. Solid Spacer Damping Treatment Concepts
Reference 2
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Figure 18. Hybrid Solid Spacer Damping Concepts
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constructed of skin and multiple spar which is thus quite rigid in shear .ith
no relative shearing motion between the skins of the tail. When two skin
damping layers are held by one solid spacer, only a minimal amount of damping
can be produced from these layers. This is similar to trying to damp a very
LRICR BCaT JiLh L0 vaTy Uivin CONSUTained-laye: daip iy Lrealieals appiied Lo
either side. But, when the solid spacers are decoupled from both skins and at
their center plane by a soft viscoelastic layer, dramatic shear relief 1is
exhibited in all of the layers. In fact, as the center layer becomes weaker
and thicker, the damping in the skin layers will begin to maximize shear

effects by increasing the amount of relative displacement between the skin and
solid spacer,

This treatment was applied continuously between the spars over the shaded
portions of Figure 15. It includes an integral damping treatment for the
leading edge as well as the main torque box. Sensitivity studies were
performed on the effect of the shear moduli in the different layers including
the shear stiffness of the solid spacers. The first bending mode has very
1ittle dependence on any of the parameters considered. Damping of this mode
1s heavily dependent on the stiffness at the root of the tail. For the first
torsion and second bending modes, the parameters that optimize the strain
energy in these modes is opposing. For instance, the torsion mode yields 9.2
percent modal strain energy at a Ggkin/Geore = 500 psi/1000 psi, where Ggy in
is the shear modulus of the skin s?se damping layer and Gegre 1S the shear
modulus for the damping layer at the center plane, and the second bending mode
maximizes at 7.7 percent at Gs§1n/5co e = 20 ps1/100 pst. Finally, more
strain energy can be produced in the Eending modes when the solid spacer is
assumed to be very rigid. The above studies assumed the shear modulus of the
solid spacer to be Ggpacer = £00,000 psi. As an upper limit, 22.0 percent MSE
was produced in the 38& ?or the second bending mode, 4.7 percent MSE for the
first bending mode and 6.0 percent MSE for the tors1og mode when Ggk in/Geore =
20 ps1/100 pst with a rigid spacer, Ggpacer = 50 x 107 psi.

The negative aspect of this treatment is that it adds nearly 40 pounds
per tail. This does not reflect any optimization by placement or geometry to
reduce the weight penalty. The weight penalty was imposed by the use of the
spacers which accounted for 85 percent of the weight increase. These spacers
were modeled with solid finite elements which were assumed to represent hollow
tubes made of composite materials and very stiff in shear. The overall weight
of the damping treatment could be reduced by removing the treatment from
certain areas of the structure that had little effect on the mcdes of
interest. For instance in the first bending mode, the leading edge and lower
to mid tail regions contribute the most to the damping increase. In the
second bending mode, the mid region contributes the most to the damping
increase. In the present vertical tai) structural arrangement, it would not
be practical to try to use this treatment in areas obstructed by wire bundles,
hydraulics, and fuel lines.

CONCLUSIONS

Viable integral damping concept have been shown to merit further full
scale evaluation. The analysis of the interface damping concept shows that it
can be tatlored for specific damping, strength and stiffness requirements by
altering the structure fastener spacing. Evidence from the study shows that a
reduced number of fasteners {s required for the interface concept because
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aircraft standards for fastener spacing along a spar results in an overly
rigid structure which inhibits any shear relief through the VEM. The analysis
of the solid spacer concept proved the proof-of-concept and showed that it
would be a candidate for future aircraft. However, a damping concept of this
sore wili need Lo pe cunsidered in cie initiai design pnase in order Lo mdke
the concept more weight efficient.
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AN INVESTIGATION OF ADD-ON DAMPING TREATMENT FOR LIFE EXTENSION
OF THE F-15 UPPER OUTER WING SKIN

M. Parin, V. Levraea, A. Pacia, and L. Rogers

Flight Dynamics Directorate
Wright Laboratory
Wright-Patterson AFB, OH

ABSTRACT

The purpose of this investigation was to design, fabricate,
and verify candidate add-on damping treatments for the F-15
upper-outer wing skin. The F-15 upper-outer wing skin has
experienced high cycle fatigue cracks caused by separated flow on
the upper wing surface. The separated flow results during high
load factor maneuvers and in turn induces large vibratory loads
on the upper wing skin and associated substructure. The
capabiiity of the F-15 to sustain these maneuvers allows the
excitation to occur for sufficiently long periods of time to
result in damage. Damage accumulates due to the resonant
vibration of local skin/stiffener modes. The cracks initiate at
the fastener holes adjacent to the integrally machined "T"
stiffeners and tend to propagate parallel to the stiffeners. Two
damping treatments resulted from the investigation and ere
recommended for F-15 fleet retrofit. One was an external
constrained-layer treatment and the other was an internal "stand-
off" treatment. Laboratory vibration, corrosion, and thermal
aging tests were conducted as part of the development of the add-
on damping treatments. Life extension factors were estimated for
both damping treatments.

INTRODUCTION

The requirement for high performance fighter aircraft places
tremendous demands on the components and materials from which
these aircraft are constructed. Inherent with high performance
are high vibration levels. One possible cause of large vibratory
loads is separated flow. Separated flcw presents an
unpredictable and complex environment. Within this environment
it is often impossible to estimate the precise dynamic flow
characteristics or loading conditions aircraft components may
experience during flight. If not properly accounted for in the
design phase, large vibratory loads can result in high cycle
fatigue and a substantial reduction of the useful service life of
the component. Skin type components, in particular outboard wing
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skins, are relatively light weight structurus which are extremely
susceptible to vibration response induced by separated flow.

The F-15 upper-outer wing skin (UOWS) panel has experisnced
cracks resulting from high cycle fatigue. The F-15 aircraft,
shown in Figure 1, has sufficient thrust to perform sustained,
high load factor maneuvers. Consequent separated flow over the
wing panel containg high-level broad band random pressure
fluctuations and induces large vibratory response in the UOWS
panel and associated wing substructure. The resulting elevated
stresses over time cause high cycle fatigue cracks to form in the
wing skin Historically, UOWS cracking dates to the late 1970's
and early 1980's. At that time, the cracks were considered to
occur only over a small portion of the skin closest to the wing
tip. Subsequent finding show that the entire UOWS is prone to
cracking.

The UOWS was originally deaigned for a service life of 8000
hours. Unfortunately the initial service life realized was only
250 hours. Several modifications were incorporated to improve
the fatigue life of the skin, including fortifying critical
locations on the wing skin. The modifications were initially
thought to have resolved the fatigue cracking problem. 1In
reality these changes only increased the life of the skin to
approximately 1250 hours. The need still remained to increase
the service life to the original design value of 8000 hours.

The purpose of this investigation was to design, fabricate,
and verily candidate add-on damping treatments for the F-15 UOWS
which would alleviate the occurrence of fatigue cracks caused by
separated flow on the upper wing surface and incresase the UOWS
service life to the desired 8000 hours. Two candidate damping
treatments resulted from the investigation and were recommended
for F-15 fleet retrofit. One treatment was a field installable
external system and the other an internal depot installable
system. Neither system required modifications to the existing
wing structurs.

BACKGR

The F~15 UOWS is machinad from a single block of 2024
Aluminum (Al) and consist of the skin, integrally machined "T"
stiffeners, and chamically milled pockets between the stiffeners.
The thickness varies from location toc location on the panel,
however assuming a constant thickness of 0.080" is sufficient for
understanding the problem. Figure 2 showa the major substructure
for the left wing. The UOWS extends from rib 1535 to rib 224, and
from the front spar to the rear spar. Thare are intermediate
ribs at locations 172, 188, and 206. At rib 188, the front,
main, and rear spars are at 10%, 45%, and 65% chord,
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respectively. Collectively, the above mentioned members
constitute the outer wing torque box. The wing skin messures
approximately 5 feet wide by 7 feet long measuring along rib 188
and the main spar, respectively. Inboard of rib 155 the wing is
"wet"”, that is, the volume is ussd fcr fuel atorage. The outer
torque box is "dry". Blind threaded, flush fasteners are used to
attach the skin to the rib and spar substructure. A scrapped
right hand UOWS is shown in Figure 3. Visaible in Figure 3 are
the integral stiffeners, their runouts, spar and rib fastener
holes, and various panel access holes. Stiffeners are numbered
consecutively starting at the UOWS leading edge. The stiffeners
are not clipped to the ribs but are allowed to move freely within
the rib notch. The cracks develop in the rib fastener holes
adjacent to the stiffeners. Predominately, the cracks initiate
either perpendicular to the ribs or parallel to the stiffeners.

A damaged UOWS, showing the crack pattern, is presented in Figure
4. Figure 5 shows close-ups of the cracks. Based on the crack
patterns and the unclipped stiffener design, it was concluded
that the UOWS cracks were mcst likely induced by stiffener
rotation. Figure 6 gives 1 convenient shorthand designetion for
the spar-rib bays which will be ussd throughout the remainder of
this paper to aid the reader in locating specific portions of the
UOWS.

The UOWS cracks are caused by high cycle fatigue. Damage
accumulates due to resonant vibration of local skin/stiffener
modes, excited by external oscillatory pressure resulting from
separated flow. The excitation occurs during high load factor
maneuvers. The capability of the F-15 to sustain these maneuvers
causes the excitation to ococur for sufficiently long periods of
time to result in damage. Other investigations concerning the
aerodynamic characteristics of the F-15 suggest that 12°
angle~of-attack provides the most severe disturbances and
consequently the most damage.

The location of UOWS fatigue cracks evolved during the
course of this investigation. 1Initially, the concern was for the
web of stiffener 4 in bay Ll (see Figure 6) and over rib 206
between bays L1 and L2. Next, it was observed that cracks also
occurred over rib 188 between bays L2 and L3. Finally, it was
learned that cracks occur over ribs 188 and 206 between the main
and rear spars. Ribs 188 and 206 themselves crack, but were not
specifically addressed in this study. The numernus access holes
in bays L4 and R4 result in a significantly heavier structure and
made this area less susceptible to fatigue cracking. Thus, with
the exception of bays L4 and R4, high cycle fatigue cracks were
observed over the entire UOWS panel.




FLIGHT DATA

Flight data were gathered to obtain TIOWS response
information during nigh load factor maneuvers and to assess the
effectiveness cf “he damping system. These test were conducted
by McDonnell Aircraft Ccrporation, St. Louis MO (MCAIR), at the
requeat and sponsorship of Warner-Robins Air Logistics Center.
Numercus other investigations have provided some flight data
along with data reduction and analysis. Thesa investigationnm
showed that obtazining accurate UOWS panel response cata was
highly dependent on whether ths panei had been installed properly
and the instrumentation used effectively. Inconsistencies in
these two areas, among octhers, can easily lead the investigator
to erronecus results. The flight test data collected for this
investigation incliuded ti:é vLeseline response of the F-15 UCWS as
well as the Uuns .3spinze with various candidate cdamping
treatment configurations. Str«in gages placed on internal and
external surfacez of the panel were used to record the bulk of
the response data. In some cases internal accelaromsters were
also used. TFigure 7 shows the location of some of the strain
gages used to obtain fligiit data. The strein gages were mounted
adjacent to stiffener #4 at rib 188. One was positioned between
the two rows of rib 188 fastener holes and the other was located
just inboard of the fastener hules. The loszation and orientation
of these strain gages wera such that the strains inducing the
fatigue cracks should bs measured. Historically, many cracks
have been discovered slong stringer §4. Based on pwxst analyses,
it was obssrved that the response data obtained at the
intersection of stiffener #4 and rib 188 could be used to
represent the respcnse over the remaining panel. Thus, the
analyses performed centered on the UOWS response measurements
taken at thia location.

A plot of angle-of-attack (AOA) versus dynamic pressurs (q)
is given in Figure £ for typical flight conditions fc¢r which high
load factor maneuver cdata was gathered. The ranges of dynamic
pressure, 350 psr to 500 psf, for the 12° AOR arcwn in this plot
illustrates the difficulty, if not impossibility, of duplicating
the service conditions for which damage is induced. The power
spectral dansity (2SD), shown in Figure 8, is “yp:.2al of the UOWS
reaponsa at the strain gage locations shown in Figure 7 for an
undamped panel. Iha Zlight conditions for thiz PSD were: 11°
AOA, 5.9¢g load factor, 0.80 Mach, 20,000 feet altitude, and 424
psf dynamic pressure. Figure 9 ahows high strain levels occur in
the 300 to 400 Herm+ 'dzn)} band. It is cbvious that this peak
makes the moat si;~. “izant contribution to cumulative high cycle
fatigue crack da-ags

Sevaral damping nreatmant configurationa were f£light tested.
The external and :ntarnal treatments which wers recommended for
F-15 retrofit ware included in the fligh® tantedl damping
treatments. Unfortunataly detailed data is nct yet available and
will not be availaria vefcre printing of thia report; thus no
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specific flight test results can be presented. The preliminary
fliglt test results received from MCAIR are very promising and
appear to significantly improve the UOWS fatigue life. MCAIR
ill velease the final report near the end of calendar year 1991.
The avove mentioned damping treatments will be discussed in
detail in the next section.

DAMPING TREATMENTS

This study investigated the performance of 13 different
candidate add-on damping treatment configurations under
laboratory conditions. For brevity only the "1980 Damping
Treatment” and the two new damping treatments which were
recommended to Warner-Robins Air Logistics Center are discussed
in this section. Past damping experience suggested that a
constrained-layer type damping treatment would offer the most
viable, cost effective solution. A constrained-layer damping
system consists of a layer of viscoelastic material (VEM) which
is constrained by a metal layer. The layers of viscoelastic
material and metal taken together are called a constrained-layer.
Often these types of damping system will be constructed of
multiple constrained-layers to achieve the desired level of
damping. Whenever the structure undergoes bending, the metal
layer will constrain the viacoelastic material, resulting in
shear deformation of the VEM. Energy is dissipated due to this
shear deformation.

An important part of designing a damping treatment is
determining the environmental condition to which the treatment
will be exposed and insuring the selected treatment will
withstand and perform properly under these conditions. Critical
environmental considerations include the operational temperature
range for which damping is desired, the effects of the damping
treatment on corrosion of the structure, and the effects of
thermal aging on the performance of the damping treatment.
Recent laboratory corrosion testing shows no degradation in
corrosion resistance caused by the application of the recommended
damping treatments. The corrosion test panels were exposed to a
standard 30 day humidity corrosion environment in the laboratory
consisting of 120° F, 98% relative humidity (RH), and salt spray.
The addition of the damping treatments had no affect on
corrosion, primarily because the paint was not disturbed during
installation. Extensive service experience with similar dam: ing
treatments has not revealed any corrosion problems. For example,
the "1980 Damping Treatment" has flown externally on
approximately 300 aircraft for 10 years with no adverse affects
on corrosion. Although the requirements used to develop the
thermal aging tests were judged to be excessive, sacisfactory
thermal aging characteristics have been demonstrated in the
laboratory for all materials used in the new damping treatments.
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The temperature exposure of 8 hours at 340° F plue 48 hours at
270° F was intended to be a conservative design condition for the
8000 hour life; however, these exposure levels are believed to be
more severe than necessasary. Thousands of hours of ¥-111 service
data establish that total outside air temperature (TOAT) exceeds
125° F leas than 1% of the time. Laboratory tests confirmed that
thermal aging caused the damping material to slightly stiffen
which tended to increase damping treatment effectiveness. An
additional igsue of practicality includes being able to inspect
the UOWS for structural integrity while the damping treatment is
installed. The damping treatment configurations used in no
instance covered up fasteners or locations where the cracks
initiate. Therefore, the damping treatments will not hinder
inspection of the UOWS either visually or radiographically and
the treatments also will not impact removal or installation of
the UOWS or other maintenance functions. A discussion on the
selection of the damping treatment design temperature follows.

A plot of Mach numbe:r versus altitude ie presented in Figure
10 for the F-15 aircraft. Included on the plot are standard day
constant value curves for the following parameters: dynamic
pressure (q), total outside air temperature (TOAT), and maneuver
load factor. The load factor is for an F-15 with a gross weight
of 42,000 pounds z.ying at a 12° AOA. The equilibrium
temperature for the wing skin and the installed damping treatment
will fall between the TOAT and the ambient temperature. The
large dash marks in Figure 10 indicate planned data gathering
flight conditions. Because the ratio of oscillatory pressure to
dynamic pressure tends to be a constant in the asubsonic flight
regime, the oscillatory pressure (thus the cumulative damage)
increases as Mach 1.0 at sea level is apprcached from the upper
left on the graph. The structural limit of the F-15 is 8g’'s.
Based on this, a tempe&rature range from 50° F to 7%° F was
selected for the damping design. No cumulative damaga was
expected below (° F or abova 128° F.

A previous attsmpt by MCAIR to correct the UOWR fatigue
cracking included the application of & multiple congtrained-layer
damping treatment re«ferred to as the "1980 Dampirg Treatment".
The treatment wag applied extarnally over bay Il 2f the skin (see
Figure 6) because at the time, the fatigue cracke ».rs considered
to occur only in thia cuter spar-rib bay. It :onsigted of 3
constrained-layers @aach of which contained a G.002" layer of ISD-
112 VEM and a 0.005" layer of aluminum. Figure 11 illustrates
the "1980 Damping Treatrnent"”. The "1980 Damping Treatment" was
installed and flowrn on numercus operational F-15 =aircraft but it
proved tc be unsucceseful in eliminating the UOWS fatigue cracks.

As previcusly msctioned, tha Flight Dynamics Dirsctorate
developad two new damping treatments which were rscommended to
W-R ALC for F-15 flee* retrofit. The treatmer's consisted of an
externally appliied, flald installable systs> and an internally
applied, depot installable system. Figure 1Z zhcowe zhe
recommended externs. troatment’s multiple (4! constrained-layer
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configuration. Two different constrained-layers were used in the
design. One consisted of a 0.002" layer of ISD-112 VEM which was
constrained by 0.005" of aluminum and the other was made of a
0.002" layer of ISD-113 VEM also constrained by 0.003" of
aluminum. Two each of these different constrained-layers were
used to build-up the total of four constrained-layers in the
external treatment design. The use of two VEMs broadened the
effective temperature range relative to the "1980 Damping
Treatment”. The six outer most spar-rib bays were covered (Rl,
R2, R3, L1, L2, and L3) by the external treatment. Figure 13 is
a photo of the external treatment installed on an F-15 wing.

The recommended internal treatment is summarized in Figure
14. Starting at the wing skin, there was a 0.004" layer of
pressure sensitive adhesive (VEM). Next there was an 0.080"
stand-off layer of syntactic foam configured to maintain high
shear stiffness and low flexural stiffness. This was achieved by
cutting a checker board pattern into the syntactic foam.
Finally, three constrained-layers of damping material were placed
on top of the stand-off layer. The first constrained-layer (from
the bottom) consisted of 0.004" of VEM and 0.005" of aluminum.
The other 2 constrained-layer each consisted of 0.002" of VEM and
0.005" of aluminum. PFor all layers the Hueston Industries F-440
VEM was used. The internal damping treatment was applied in the
chemically milled pockets between the integral stiffeners for all
8 spar-rib bays shown in Figure 6. Additionally, there were
viscoelastic links (VELs) placed between the caps of the integral
stiffeners and the notches in the rib. The VELs were located in
all rib notch locations. The VEL material was slightly tacky at
room temperature. A VEL thickness of 0.50" was used to provide
an interference fit. The purpose of the VEL was to provide a
link (having both stiffness and damping) from the stiffener cap
to ground (rib notch) thereby reducing stiffener rotation.
Figure 15 shows the stand-off damping treatment applied to the
internal surface of the wing skin. Figure 16 shows the VELs
located in the rib notches.

The installation of the damping treatments was simple and
straight forward. First the UOWNS was cleaned to remove all oil
and dirt. Next, the external damping treatment was pre-cut to
fit between the fastener rows for each spar-rib bay. The
treatment was cut to insure that access to the fasteners was not
impaired. A small amount of split peel ply or rolease paper was
removed from the bottom of the damping treatment, exposing the
first layer of VEM. The damping treatment was then carefully
centered onto the appropriate spar-rib bay. Finally, the
procedure was to gradually remove the release paper from undc.
the damping treatment while simultaneously adhering the
treatment. Special care was necessary to minimize entrapped air
bubbles. A small, flat plastic scraper was rubbed over the
surface of the external treatment as it was applied to squeegee
out as much air as possible. This step is illustrated in Figure
17. A nice feature of the external damping treatment was that
small amounts of compound curvature could be accommodated without
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adversely affecting the quality of the application.

The internal atand-off treatment was applied in a similar
manner except additional effort was required to avoid damaging
the brittle stand-off layer. The pieces of internal damping
treatment were much smaller than the external damping pieces and
therefore air entrapment was not a problem. Hand pressure was
sufficient to apply the internal treatment so the plastic scraper
was not used. The VELs were provided with release paver on the
surfaces which were to adhere to the skin stiffener and the rib
notch. During installation, the releasc paper on the rib notch
side is removed and the VEL is positioned in the rib notch. Just
before installing the skin, the second release paper is removed.
The thickneass of the VEL was such that an interference fit
resulted; however, the force required to install the UOWS tightly
to the substructure was nominal and easily provided by advancing
the fasteners.

Life Extengion

A comparison between the response of the baseline UOWS and
the UOWS with the external damping treatment inatalled is
presented in Figure 18. The frequency response functions (FRFs)
are the acceleration FRFs which were integrated twice to obtain
the compliance (displacement) FRFs; the compliancs FREs were
assumed to be proportional to strain. Figure 15 makes a similar
comparison for the internal damping configuration. Notice the
dramatic, beneficial reduction in response. The comparisons in
this report were made on the basis of RMS stress rather than
comparing peaks. Figure 20 presents the equation used to
calculate a life extension factor. The ratio of the damped to
the baseline response is raised to the proper exponential to give
the life extension (ie, ratio of life). The RM3 of the
compliance FRF between 300 and 400 Hz was the basis of the
calculation. Calculations made in this manne: revealed that the
UONS with the "1980 Damping Treatment" would last 4 times as long
as the baseline UOWS (bare UOWS), thus the life ex_snsion was a
factor of 4. The life of the baseline UOWS is approximately 1250
hours, therefore the projectsd life with the 1230 Damping
Treatment is 5000 hours. Obviously, this is an estimate;
however, it does provide a measurs of the damping treatment’s
performance. Similar satimates gave life sxtension factors for
the new recommsnded external and internal treatments of 5 and 34,
respectively. Tha internal treatment is consicdersd the primary
solution to resolve the UCWS high cycle fatigue cracking. This
is because of the dramatic reduction in responas achieved when it
was installed. 1Its large life extension factor should offset a
variety of uncertainties not accounted for by ~his investigation,
such as precise temperature at which damage accumulates, the fact
that RM3S stresses were used instead of peak streases, and
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potential changes in future operational usage.

CONCLUSIONY

The Fight Dynamics Directorate, at the request and
sponsorship of Warner-Robins Air Logistic Center teated 13
candidate add-on damping treatments for the F-15 UOWS. Of those
tested, two damping treatments were recommended for F-15 fleet
retrofit. One treatment was an externally applied coastrained-
layer treatment and the other was an internally applied stand-off
treatment with viscoelastic links in the rib notchea. The
external and internal treatments resulted in life extension
factors of 5 and 34, respectively. Thermal aging and corrosion
tests were perf.:med on the Jdamping treatwents with no adverse
effects noted. At this time, there is no evidence to indicate
that the recommended damping treatments should not be used to
alleviate the UOWS fatigue cracking. Three hundred F-15 aircraft
have accumulat»d ten years of service experience with the "1980
Damping Treatment" and to the authors knowledge there have been
no reports of concerns or adverse effects associated with add-on
damping treatments. It is projected that retrofit of the F-15
fleet with UOWS containing the internal treatment will result in
a net savings of $100M in maintenance and repair costs over the
next 25 years. The recommended damping treatments are fully
qualified for F-15 fleet retrofit and represent a viable, cost
effective solution which will substantially improve the F-15 UOWS
service life.
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DAMPING TREATMENTS FOR AIRCRAFT
HARDMOUNTED ANTENNAE

Ralph E. Tate, Sr.!
LTV Aircraft Products Group
Dallas, TX

Carl L. Rupert
LTV Aircraft Products Group (Ret.)
Dallas, TX

ABSTRACT

The Air Force Wright Research and Development Center’s Aircraft Integral Dayp-
ing Demonstration Frogram is beiig conducted by LTV to illustrate tne advantages
of incorporating damping into aircraft structure during the design phase of develop-
ment. The present study deals with the important Band 6, 7, 8 antennae packages
on the B-1B Aft Equipment Bay, where equipment failures are routinely occurring
during take-off maneuvers at maximum afterburner throttle settings. That damage
results from the intense vibroacoustical environment generated by the four three-
stage afterburning engines. Failure rates have been sufficiently high to warrant o
departure from the basic study to develop a “quick fix” solution involving add-on
damping treatments, that can be installed in a short time with minimal modification
to the existing structure.

The approach used in this program was to analyze opernting ground test data
that were generated on the antennae components, in conjunction with analytical
models. Modal testing identified areas where damping treatments could be applied
to reduce the resonant effects of the local system. Various treatments were de-
veloped, analyzed, and tested in situ on the aircraft. 'Thus, a cost effective and
technically viable solution to acoustically induced failures was achieved.

FULL PAPER NOT AVAILABLE FOR
PUBLICATION

7573@?:&&?@4&&1& Aircraft Products Group, P.O. Box 8566907, M/S-194/26, Dallas,
‘TX 75268-5907, (214) 268-8126
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EXAMINATION OF BOUNDARY CONDITIONS
FOR
SIXTH-ORDER DAMPED BEAM THEORY

by
Ralph E. Tate
LTV Aircraft Products Group
Dallas, TX

ABSTRACT

The purpose of sixth-order beam theory is to include the
effects of core shearing due to extentional deformation in
terms of the transverss diaplacements. The constraint to
eliminate the extentional motion reduces a twelfth-order
system of equations into a single sixth-order equation.

Since boundary conditions are necessary to completely
specify the solution of partial differential equations,
the author purposes to use this forum to present a
detailed derivation of the sixth-order equation of motion
using energy method techniques. The boundary conditions
follow naturally as a consequence of the energy method
formulation. The author show how two "natural® boundary
conditions are lost, and must be replaced by two "kine-
matic" boundary conditions. The author interprets the
boundary conditions and their consequences in the analysis
of damped beams.
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1.0 INTRODUCTION

Usage of constrained-layer damping ccmposites for sound and vibration
suppression originated in the 1950’8, perhaps earlier([k]; however, the un-
derlying theory was based on 4*P-order beam theory and presumed no extension-
al deformation of the laminate. In order to include the extensicnal flexib-
ility, severai authors developed ¢*"~order beam and plate theories to de-
scribe the dynamic behavior of damped composite laminates [a,b,c,g,h,i]. The
purpose of the 6*"-order theories is to include the effects of core shearing
due to the extension of the face sheets, in terms of the transverse bending
displacements. The constraint to eliminate the extensional motion causes the

equations of motion to be of 6°"-order.

Dowell{h] and Miles{c] derive the laminate equations wusing an energy
methoa approach tc obtain the equations of motion. Dowell then retains terms
only to ;*P-order, since the adhesive shear layer is assumed stiff. The
resulting boundary conditions are those found for 4*"-order beam and plate
theory. Dowell’s formulation is useful in evaluating the interlaminar shear
in fiber composites. Miles’ obtains the 6% -order equations ags a side dis-
cussion to validate his model: he does not elaborate on the boundary con-
ditions required for solution for the 6*"-order syster. Miles study pro-

ceeds to thickness effects on damping.

Mead(a,b) and Abdulhadi(g]! derive the equations of motion from a stan-
dard strength of materials perspective. This approach does not directly
yield ‘he boundary conditions as part of the formulation. Abdulhadi also
does not articulate the boundary conditions nacessary for solution: simply
supported boundary conditions are presumed. Mead develops the boundary
conditions and discusses the solutions for various boundary corditions.
Maynor  [j) numerizally evaluated the effect of Mead’s bcundary conditions on
lngs factcr e.*imates. He also ohgerved that Abdulhadi deleted two boundary
conditions  in cbtarning hie scluticn. Ejsentlally, Abdulhadi’s equations of
motinn  are erquivalent t the 4 "-order BKU equations {k]. Maynor delineated

O ‘ th :
the d1fficulties and iimizations in using the 6 -crder aguations.

{
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In the attached paragraphs, the 6 " -order partial differential equation
is obtained using energy methods. Subsequently, the boundary conditions are
obtained. The limiting procedure shows how two "natural"™ boundary conditions
are lost. Thus, two "kinematic" boundary conditions must be specified, that
further reduce the generality of the 6" -order equation. The basic outline of
the paper begins with the derivation of the equations of motions following
Miles’ assumptions, then validating the required boundary conditions used by

Mead. The ramifications of those boundary conditions are discussed.

2.0 VARIATIONAL FORMULATION OF THE SIXTH-ORDER BEAM EQUATIONS

The sixth-order differential equation governing the vibration of a three
layer sandwich beam will be derived using a variational approach. The beam
geometry is depicted in the preceeding Figure.

The kinetic energy of a *he vibrating beam is given by:
L 2 2 2 2
- / y X " y -
T 1/2 J.O[ﬁli(wl) t (ul) ] + mz[(wz) + (uz) ]] dx. (2-1)

Similarly the elastic energy due to deflection of the constraining skin mat-

erials is given by:

L
V.- 172 J.o [(EI)I(W1")2 t (EI)Z(WZ")2 + (EA)l(ul')2 + (EA)Z(uz’)z] dx. (2-2)

The strain energy due to shearing of the adhesive core material is[d]:

Q
[ =4

(2-3)

L t3 2
v - 1/7J. Gh r y" dt dx, where Y= oW +
0x

Q
N

0 0

The shear traction at the upper and lower surfaces of the adhesive is found
to be:

2t

T, T * _23 Y, ¢ _El Y ¥ Y T Nl {2-4b)
2t 2t t
3 ¥ 3

The distributed shear strain throughcut the adhesive thickness 189:
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LA PR (”1 } 72)} ‘ (2-5)
%
After substitution and integration over the thickness, the strain energy due

to shearing of the adhesive is found to be:
L
v - 1/2J Gbt , [7172 GAEEAE ] dx (2-6)
o 3
In order to apply Hamilton’s Principle, the total energy in the vibrating
beam is given as Q-T-V.-V.+Wn°, where

L
. . o ’ ’ ’ " n, -
Q= JF(ul,uz,wl,ﬁ u, uz,wl wz,u1 ,u2 AL AN AN JX,t) dx. (2=7)

0
Applying Hamilton’s Principle, the variational of the energy is minimized,
that is:
2
8J =38 Q(.) dt = 0.
1

Hence, the differential of J(.) is:

2 r
aF F oF
8J= J‘ {I ([—— Su, + == 8u + — , 8u '] (2-8)
1 0 au1 1 au1 1 u1' 1
aF aF aF o1, [ ar aF .4, 3F
' l}d Bu, * 30 %% * 5y iy, ] ' [}ﬁ AP LTS AT T '5"1']
2 2 1 1 1 1
aF El4 1 PURPIINE | S
+ [é*z sz + 8w2 awz + "z' 6w2 + awz' 8w, ])dx dt (2-8)

After integration by parts, the integral appears as:
sa= [ " (Tor 3F d oF _ df3F d(aF
J= = - = - Tl | - ols= 8u
o, dt au ou dt gt dx gu_’ 2
1 2 2 2
£ -2 A (” J ]
+ [—- - - n] - P (x,t) |8w
3w1 v, 1 1
d _ d

2
d(oF d(oF F
* [aw2 dt G‘}’J dx 'a‘wz') —re @32" B R ]5“2) 4
F oF oF d(oF
+ [—— , = T }5u + - T Jbu + [— - -[2— ,,) -V ]éw
' 1 o1 auz’ L Y awl’ dx 9w, R1J 4
oF d(oF J*V ] [ar d(orF ) ]
i P Rl v 8w + =, Zl= -V _ 18w (2-9)
[éwl dx\gw " L1] _3 ow,’  dxigw " R2] ¢
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aF d(br)+ ] [ar ] [ar ]
ol el o I T - | AU [ T2 -~ L F T
[éwz' dx aw2 L2 _8 aw1 R ¢ aw1" A
aF dF JaF aF
+ [— - M ']w' - [— + ’]bw' - [—— +T]6u - [—— +T]6u)dt.
8w2 R2 | ¢ awz" M. b aul' 1) 2% auz’ 2] %
Equating each variational term to zero then ylelds the equations of motion

and the required "natural™ (or force-type) boundary conditions. Thus, the
complete system of equations is found to be:

QE - g _E - QIQE - QE - g F _ g _E -0
au1 dt ahl dx‘?ull ’ auz dt 552 dx auzr '
2
Q{. B d% 3\%) - d':'[g% ') + d%’@% n] =P (x,t), (Eqns. 2-10)
1 1 1 1

OF _ d@F) _ dfE Y, difer
3w, Tt 5‘&2] dewZ'J * dx? awz") B, (xt)

The system is subject to the following boundary conditions:

JF JF aF d(oF

A <0, &, -1 -0, & ,- -@—,)-v -0,

au1 1 oL au2 2 oL awl dx aw1 B .

oF d(oF aF dfoF

3w ' dx ow ,] tVvol=0 3w ' " dxw ") Veo | - 0, (Eqns. 2-11)
1 1 xX=0 2 X=],

oF d(DF )+ aF , aF ,

= ;= IS on V - 0’ S "- M - 0, s # M . - 0,

dw, " dxlgw, L2 o W, RL | . aw ® ey o

aF oF oF aF

— M =0, =, +M =), == +T =0, and = + T_| =0.
L] 4 " ’ 14

aw2 R2 | aw2 L2 =0 au1 =0 au2 2 <=0

The system is comprised of two fourth-order equations and two second-order
equations. The twelve "natural” boundary conditions completely specify the
solution. Hence, this set of differential equations is well-posed, as should
be expected.

Next, the various partial derivatives of F(.) are derived:
au m Uy o M aw - ™Yy aw mzwz’ aw_" (EI)1W1 " ow_ " (E1)2"2
1 2 1 2 1 2
9F _ . P OF
Ju ' (EA)lul " 30’ (EA)ZUZ"
1 2
?ig - - ! ! u "U
35 (1/2)Gb {(1+2a1)w1 + (1+2a2)w2 + 2( 1 ZJ},
1 t
3
9 /26b {1420 0w+ (Ls2a v’ + 2[% 7Y
au2 11 2’2 < !

3
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i
==

,--(1/2)th3{[2/3+2a1(1+a1)]W1' + [-2/3+(1+a1)(1+a2)+a1a2]H2'

+ (1+2a1) (ul-uz}}, and
t,

,--(1/2)th3{[-2/3+(1+a1)(1+a2)+ala2]w1' + [2/3+2a2(1+a2)]w2'

+ (142a,) (ul -uz]} .
t,

After substitution into the (2-10) and (2-11), the equations of motion for

1

ja
=1

2

the system are obtained:

mw + (sx)lwl“’

11
-(1/2)th3{[2/3+201(1+a1)]w1' + [-2/3+(1+a1)(1+a2)+a1a2]w2“ (2-12a)
+ (1+2a1)(%1’-u2']} =P (x,t),
t
m, 4 (zr)zwz“’ 3
-(1/2)th3{(-2/3+(1+a1)(1+a2)+u10%]w1“ + [2/3+2a2(1+a2)]w2“ {2~12b)
2 A
+ (1+2a )[“1 Y, J- P_(x,t),
2 ——E*——— 2
3 /

- N
mlii1 - (EA)lul' - (1/2)Gb {(1+2a1)w1' + (1+2uz)w2’ + 2[“1 uz) = 0, (2-12¢)
t3 J
- \
md, - (EA),u " + (1/2)Gb {(142a,)w ' + (1+2a,)w ' + 2[?1 “z) = 0.(2-12d)
t
3

/
Correspondingly, the boundary conditions become:

(EI)lwl(s) - (1/2)7%* {[2/3+2a1(1+a1)]w1’ + [=2/3+ (1+a ) (14a,) +o @, W, !

=T
+ (1420.) [ul-uzD
t
3

(Ex)lwl"’ - (1/2)th3{[2/3+201(1+a1)]wl’ + [=2/3+(4a,) (14a,) +a o Jw, '

+ (142 [u1 -uz)]
t
3

(51)2w2‘3’ - (1/2)th3([-2/3+(1+a1)(1+a2)+a1a2]w1' + (2/342a, (14a,) W,

+ (142a,) (ul '“z]}
t
3

(zx)2w2‘3’ - (1/2)th3([-2/3+(1+a1)(1+a2)+a1a2]w1’ + (2/3+2a, (14 ) 1w,

+ (142a,) (ux'uzn
t
3
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- an (2-13a)

x=L

=- “VLI (2-13b)

x=0

- VRZ. (2' LSC)

XK=,

- -VLZ (2-13d)

x=0




LI - - L.
(Er)lw1 MLl l 0 (2-13e), (EI)2w2 ML2

‘x=L

- 0 {2-13f),
L

e

(EI)lwl" + ML1 x:OO (2-13qg), (EI)2"2' + MLz x:OO {2-13h},
(EA)1U1' - '1'1 x:LO (2-131), (EA)zuz' - T2 x:LO {2-133),
(EA)lul’ + T1 x:00 (2-13k), and (EA)zuz’ + T2 x:00 (2-131) .

The procedure of Miles and Reinhall{c] will be followed to reduce the
system of equations to sixth-order. First, the two bending equations are
added, then the two longitudinal equations are subtracted, respectively:

{4) 4)

. . (
m W + mzw2 + (EI)lw1 + (EI)2w2

-(1/2)th3([2/3+2a1(1+a1)]w1" + [-2/3+(1+al)(1+05)+a1u2]w2'

+ (1+2a)) [ux 'y, 'D
t,

-(1/2)th3([-2/3+(1+a1)(1+a2)+a1a2]w1' + [2/3+2a2(1+a2)]w2“

+ (1+2a2)Eﬁ'-u2'}]
t3

= ? (x,t) + P, (x,t) = P(x), and

mu -mu - (EA)1“1' + (EA)zuz"
- (1/2)Gb ((14-20: Yw. ' 4+ (142a )W ' + Z(ul-uzn
1 1 2" 2 -z———
3

] ’ u, -u -
- (1/2)Gb {(1+2a1)w1 + (1+2a2)w2 + 2( 1 2)) 0.

ts

Now allowing LA the equations reduce to:

(4y _ 2 (2) _ Pey 1) a P! -
Dt W th3(1+al+a2) W Gb(1+a1+a2)(u1 u, ) P’ (x) ,and (2-14a)
- " _ L]
Y17 ) - (1va o) w4 (EA) u," - (EA) u, ). (2-14b)
t 2Gb

3

P’ (x)=P(x) - (m +m) V. The effect of longitudinal inertia is also neglec-
ted. 8ince the each cross-section must remain balanced in tension, (EA)lul'-
-(Ek)zuz' Using this relation and after substituting (2-14b) into (2-14a)
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the former, the foliowing equations are obtained:

Dt w(‘)-tha(1+01+“2)2"‘2)-Gb(1+a1+a2) 1 + 1 (EA)luI, = p’ (x),
(EA)1 (EA)2 (2-15a)

and

(4}

- (3)
Dt W t3(EA)1(1+a1+a2)u1

- P’ (x). {2-15b)
The equations can be greatly simplified using twc scale factors|p,c]:

(EA), (ER),

2
G' = Gb ( 1 + 1 ], and Y= Eg [ }; thus, (2-16)
{

t, (En, TEA), D, (ER)_ + (ER),

v S erywt? - (G’ta/Dt)(1+a}+a2) u’ =P (x)/D_, and (2-17a)
4 _ M) p ' -

W [t (EA) /D] (L+a +a )u, P’ (x) /D, . (2-17b)

The final step is to eliminate u, from the equations. This is accomplished
by taking the second partial with respect to "x" of the first equation and
multiplying the second equation by G’, then subtracting:

’
S L [EL ) G'P'] ror
?
t

I

E— -'p J (2-18) //.
————— 2
. oX

The corresponding reduction in the bounddry conditions follows in the follow-

(6}

w'® - (1+)er WY

-+
E]
|3
N
SlE
~N
1
@
\_f_/
[}
ol —

ing section.
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3.0 BOUNDARY COMDITIONS FOR THE SIXTH-ORDER BEAM EQUATIONS

The procedure for reducing combining the boundary conditions follows the

same prescription as above. After adding the shear terms together, the

boundary equations become ‘"1-"2):

(3) _ 2.0 . - \‘ - -
Dt w th3(1+a1+a2) w Gb(1+al+a2) (u1 u,’ x-LVR VRI + Vn, and(3_1)
(3) _ 2 - - - -y m - - -
Dt W th3(1+a1+az) w' Gb(1+a.1+o.2) (u1 uz) o VL VLl sz' (3-2)

The following equation is valid throughtout the beam and can be shown to be

equivalent to the extentional boundary conditions (after a lot of work}:

[ }
t
3

Since the procedure is identical for both equations, the derivation will pro-

L
= =(1+a +ta_)w
(1 al 2)

" _ L
+ ((ER) u, (EA) u, ™

(3-3)
2Gb J

0 0

ceed using only the first equation. After direct substitution of the exten-
tional terms, the boundary condition becomes:

3y _ - -
W [t3(1+a1+a2)/Dt](EA)1u1' VR/Dt. (3-4)
x=L
Taking the second derivative of (3-1) yields:
(%) _ (3 _ | - -
W G' Yw (6't, (1+a +a ) /D ] (EA) u " 0. (3-5)
x=L
Eliminating the u, from the preceeding equation:
- s e W = 6/ v, (3-6)
x=L

Thus, the set "natural™ boundary conditions become(a,b]:

_w('ﬁ) + (1+Y)Gl w(3) - (G’/Dt) vn. (3'73)
Xx=L
W s ane WP - - (6'/D,) v, (3-7b)
xw=(
Dwht - M’ a0 (3=7¢), and Dwt + M| =0 (3=-7d).
t R t L
¥l Xem()
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Analogously, the moment boundaries are evaluated. Again, right hand
boundary alone will be evaluated, since the process for the left hand is
identical. Thus, the moment equation equation becomes:

L - - - -
D w (MRl + an) (T1 Tz) t3 (1+a1+a2) 0. (3-10)

t
2

x=I,

After substituting for T1 and Tz’ the resulting equation is:

| I 1 - /I - ’
th Ml { (EA)lu1 (EA)zu2 ] t3 (1+a1+a2)
i

=0 , or (3-1lla)

Xx=L

since (EA)1“1’- -(EA)zuz' throughout the beam, the equation reduces to,

- 0. (3-11b)

Xx=L

" -
th MR (EA)lul’ [ t3 (1+a1+a2) )

Taking the second partial derivative with respect to "x" of (3-1la) yields:

40 _ - (3 _ (3) . _
th Mh [ (EA)lu1 (EA)zu2 } t3 (1+nl+a2) 0 . (3-12)
2
x=1
Substituting (3-3), this equation becomes:
(4) _ 2 . _ - v - -
th th3(1+a1+aé) w Gb(1+a1+a2)(u1' u2 ) x-g. (3-13)
This can be re-written as:
(4 2 1 1 '
D w -Gbt _ (l+a_+a_) "w"-Gb(l+a_ +o_) + {EA) _u =0, (3-14)
t 3 12 1 2! | —_— 11
(ER) (EA) x=L
1 2
After applying the scale factors,
pw' -6y w'? - [ G't. (14+a.+a.)/D ] (EA) u.’ = 0. (3-15)
t 3 1 27 e 11

Eliminating v using (3-11b), the moment boundary condition reduces to:

. (3~16)

X=L

’

Ma - Dc [ -wit {1+G’) w(z’]
J
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Thus, the set of "natural® boundary conditions become:

w4 e W = et /ny) v, (3-17a)
x=1

w4 (e W - -(6"/D,) v, (3-17b)

x=0
M = Dc [ Wity (1+G") w(Z)} , and (3-17¢)

D 1

xwl

M o=- D (-w“) + (1+G’) w"’} . (3-17d)
L G’
x=0

These force-type toundary conditions agree with those obtained by Mead
and Markus [a,b]. Only four "natural® boundary conditions now remain to
specify the sixth-order equation. Thus, it is necessary to specify two addi-
tion "kinematic" constraints; otherwise, the problem is not well-posed.
Representative "kinematic®™ constraints are:

clamped-free-

- ''m - -
AL 0 or wL-wL' 0, (3-18a)
simply supported-
wR-wL-O, {3-18b)
simple-roller-
- ' - '- - -
o 0 or w'=w =0, and (3-18¢)
no rotation-
w.’-wL’- 0. (3-184)

Mead [a] discusses other exotic boundary conditions that are permutations of
the above "natural" and "kinematic" end conditions through relaxing the vari-

ous boundary tractions,

4.0 DISCUSSION/OBSERVATION

The equations of motion and associated boundary conditions for a three-
layer compoaite laminate were derived in Section 2.0 (Eqns. Z-~12a thru
2-131). The "naturai" or force type boundary conditions are a consequence of

the energy method formulation [e,1]. That system of equations is of twelfth-
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order and the solution is completely specified by the "natural®™ boundary
conditions; thus, the equations of motion are well-posed. Consequently,
since the system solution is completely specified by its "natural®™ boundary
conditions, the formulation can be employed in the analysis of built-up
structures (eg. a finite element analysis), albeit cumbersome. The exist-
ence of all "natural" boundary conditions permits the universal satisfaction
of internal compatibility conditions required in a finite element type solu-
tion. Miles and Reinhall (c] proceed to perform an assumed modes solution to
examine the thickness deformations in a three-layer composite. Their studies
showed that thickness deformation is an important damping mechanism , espec-
ially in higher order modes.

The twelfth-order system was reduced to a single gixth-order partial
differential equation (2-18), as shown in Section 2.0. By a similar process,
the "natural” boundary conditions are reduced to four in number (3-17a thru
3-17d). Both the boundary conditions and the sixth-order equationa agree
with those derived by Mead (a,b].

The point to be observed here is that only four "natural®™ boundary condi-
tions remain to specify the solution of a sixth-order differential equations;
that is, a deficit of two differential equations. By constraining the
extentional degrees of freedom (3-3), two boundary conditions are lost.
Thus, two geometric or "kinematic" boundary conditions must be specified for
the solution to be well-posed. Several possible "kinematic" boundary condi-
tions are provided in Section 3.0 (3-18a thru 3-18d) to augment the "natural®
boundary conditions. Mead discusses other admissible boundary conditions |a,
b).

Since the sixth-order partial differential equation cannot be completely
specified by the "natural" boundary conditions, a complex built-up structure
cannot be modelled. Only simple structures {(eg. single span beam< and
plates) can be evaluated. For example, element ~ompatibility conditions in a
finite element formulation cannot be universally satisfied without the impo-
sition of a "kinematic" constraint; thus, the type of structure avaluated is

limited, that is a general sixth-order beam or plate finite element cannot be
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formulated.

Further, Mead demonstrated that all solutions to the sixth-order equation
are complex-valued functions, with the sole exception of the case with simply
supported boundaries. (The solution to the simply supported case is a real-
valued function. This case can be further reduced to the standard RKU equa-
tions [c, k].) Thus, computationally, the sixth-order equation is effective-

ly a twelfth-order system. No gain in computational effeciency is obtained.

The principal benefit derived from the sixth-order equation is when the
relative extentional motion of the face sheets becomes significant, that is
when one or both of the face sheets possess a low stiffneass relative to the
core shear stiffness. In this case, Maynor ([j) has shown that numerical
solution 13 neither particularly easy nor necessarily guaranteed. For the
majority of engineering applications, a fourth-order (RKU) formulation is
adequate to describe the dynamic behavior of damped laminate beams and plates
(.

5.0 SUMMARY

The author has presented a detailed derivation of the sixth-order beam
equation and attendant boundary conditions. The author has shown how these
boundary conditions naturaily arise as a consequence of the variational
energy method approach. The author shows how the boundary conditions vanish
as a result of constraining the extentional motion of the face sheets, there-
by requiring the imposition of "kinematic" constraints for a well-posed solu-
tion. These additional restraints restrict the types of structures which can
be evaluated using the sixth-order equation. A useful modification to these
boundary conditions is the inclusion of damping into the boundary conditions
[m} . Inman has observed that such terms in the boundary conditions are
important in the mechanics of line-of-sight/slewing or pointing/control

applications of articulating structures.
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The Effect of Compliant Layering on Damped Beams

David John Barrett

Advanced Structures Technology Branch (Code 6043)
Naval Air Development Center
Warminster, Pa. 18974-5000
(215) 441-3770

ABSTRACT

This paper reports the results of an analytical investigation into the
effects of compliant layering on damped beams. The beams consist of
laminated face sheets sandwiching a single damping layer. Compliant
layering is introduced into this construction by making the extensional
modulus of the inner layers of the face sheets substantially less than that
of the outer layers. The analytical model, that is used to determine the
mechanical response of this type of structure, is based upon a generali-
zation of constrained layer theory. The analysis predicts that compliant
layering can be used to reduce the forced response and improve the
maoclal damping.
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1.0 INTRODUCTION

Damping treatments for bending components typ. ally consist of adjacent layers
of suffness and damping materials. In these components the damping layers are
sandwiched by the stiffness layers so that, when the stiffness layers deform under
transverse loads, their bending will shear the damping layers. Because of their viscos-
ity, the damping layers convert part of the strain energy of shearing inio heat and
thereby provide a means for gissipating the energies of shock and vibration |1, 2},

Any design approach that increases the rate or amount of shearing in the damping
layers has the potential of improving the structural damping. Cempliant layering,
which in a layered design is the direct substitution of compliant material for stiffness
material, offers such a possibility. The stiffness layers of conventional damping treat-
ments consist of either monolithic isotropic, laminated quasi-isotropic or laminated uni-
directional materials. This design practice results in in-plane moduli that are essen-
tially constant over the depth of the stiffness laver In thece devigne compliont layering

fei

would replace that part of the stiffness material that 1s adjacent to the damping layer
with o maternal of lesser modulus. The in-plane modulus would no longer be constant
over the stiffness hayer and the in-plane extensional stiffness would be reduced. The
hypothesis 1o be examined ia this paper is that, under cyclic vibraiion, the use of com-
pliant layers to reduce the in-plane extensional stiffness of damped treatments allows
the stitfness layers on either side of the damping layer to undergo greater in-plane
transhations.  This increases the rate of core shearing and thereby leads to higher levels
of energy dissipation,

[n @ previous work {3, 4] a lamination theory was formulated that i 2pplicable 1o
a general class of damped bending structures, including structures with compliant
fayering. The lamination theory was used to examine the effects of stress coupling,
Lammation and compliant layering on damped plates. Here the original analytical
theory s reduced tor application to damped beams. Relevant parts of the previous
anabvtical results are repeated and expanded here for the study of compliant layering in
damped beams.

2.0 OUTLINE OF THE FORMULATION

‘The anaiytical model 1s 2+ damped beam consisting of top and bottom face sheets
sandwiching a single damping laver (see Figure 1). The face sheets are izyered with a
otal of N Tavers in the op face sheet and NE layers in the bottom face sheet. The
thicknesses of the individual layers are designated by t,',[ for the top iayers, tf for the
bottom lavers and 7 for the damping layer. (Here the subscript n identifies individual
stftness yers while the superseripts T (top), D (damping), and B (bottem) refer to
sprcthe parts of the stiuenies. The global coordinate system shown in Figere 1 and
ived i the development consisty of the axial coordinate x, which is located in the
mnd surface of the damping laver (the reference surfuce), and the transverse coordinate
Ly




To analytically model this structure the following assumptions are made:

——

The in-plane deformations of the face sheets vary linearly through the face sheet

thickness;

2. The in-plane deformations of the damping layer vary linearly through it’s thick-
ness;

3. The in-plane displacement fields are continuous across the interfaces (perfect
bonding);

4. The transverse displacement is the same for all parts of the cross section.

5. The moduli of all of the materials of construction can be treated by the Complex
Modulus model;

0. The materinl model for the stiffness layers is transversely isotropic but neglects
the thickness normal stresses. The axis of isotropy is parallel to the mid-surface;

7 The materia!l mode! G diz damping layer iy isotropic but neglects all of the nor
mal stresses.

Using assumptions 1 through 4, the motion of the structure can be expressed in
terms of five displacement degrees of freedom (see Figure 2). These degrees of free-
dom are the reference surface displacements (ulo and u:,o). the rotation of the damping
layer about the reference surface (aID), and the rotations of the top and bottom face
sheets (o] and al). The degrees of freedom of this structural model are therefore a
generalization of those found in constrained layer theory in that the top and bottom
face sheets are allowed to rotate independently.

The displacements in terms of the degrees of freedom are
Top Face Sheet

1 I :
wy=u (.0 + 5:’)a{’(x1,1)+(x3—Er”)a{’(xl.t) (1)

Damping Layer
ul=u{)(.xl.t)+,x_;a|“(x,,‘c) (2)

Bottom Face Sheet

ul=u,“(xl,1:)—%t“af’(xl,t)+(x3+ %ID)(IIB(XI,I) (3)

Complete Construction
wy=ud(x;,xy 1) (4)

where the symbol T is used o refer to the time variable. rom these assumed dis
placements, the strain helds are computed using the strain-displacement equations. The
stress tields are then found by applying the constitutive laws.

The equations of motion for the damped beam structure are derived using
Hamilton’s Principle in conjunction with Reisensi’s Variaiionai 1heorem.  Since
Paniilion’s Principic 1s only applicable to conservative systems, the material propertics
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are inttidly treated as being purely elastic without any damping. The energy mtegrals,
the mtegrands of which are formed from the fielg vanables, are then nmunimized for
this provisional, fully clasnie system. The stress resultants are included by performing
the thickness integration of these integrals. Taking the variaticn of the integrals with
respect 1o the generalized displacements and forces and setting the coefficients of hke
vartations (o zero yields the governing system of differential equations. These equa
tions include the force displacement relations, the boundary conditions and the follow-
g cquations of motion

“‘/";/Ilg - ¥ /)"l '/’\?A’uv +/la] +/;(1]+1 a}B:() «(}

- l' {\': o /l‘{\{ B / [:)",I - /) g“' /Wll; :() ((\)

I 1) { n . e ) [) . - .

';f (']"\ ?’/'11‘1)4”1‘11 +lvll l 4‘1'7:11+I (ll:() (7)

—UF MY sl wrfaP+idal =0 (8)

| 1) g i s B

":[‘/“1;.! */“1'»‘ !‘l 1 Tllul +/;(‘L, +I‘§(X.\ =4{) /\())
. AT Ay ! igl oo, YN o oan dirveyie oo
i owheeh the B0 F £ M AY and MYy are the face sheet and dwmping faves
torce and moment stress resaftants, the £, are the applied triactions and the A7, 1 e,

e |H\'Z‘1>L_|I Canstanty

At this point the force-displacement relations are substituted into the equations of
motion. This yields a set of five displucement-equilibrium equations the unknowns of
which are the tive functional displacement degrees of freedom. Solutions to specific
problems are found by applying the appropriate set of boundary conditions and solving
these cquations. In matrix notation these equations take the form

U+ ] = 18 (109
where [M s the mass matnx, (0] 08 o ditferential operator matnx, i j s a vector of
unkriown displacement tunctions and {71 15 a load vector.

Once an chsiic soluton iy obtiined, damping can be introduced b invoking the
Contespondence Principle o which the clastic moduli are replaced by the complex
viscoclastic modult of the Complex Madulus model. Application ¢t the damped beam
miodel iy therefore nmuted © steady state harmonic vibrations.

300 SOLUTION FOR SIMPLY SUPPORTED BEAMS

Consider o bean ot o gdnthe 2 direction. Onthe x =0 and vy =a edpes
the s hemn v snophy serrorted. Forthese boundany oondtions the Pourier series
v othod can be appiica s sobve cquation (1) using the tedlowing series cxpansions ot
the dpiacement degrees of freedom

res ULy
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al= 3 AT cos( )e'i¥ (13)
m=1 a
- mix,

(lll - EA,IM cos( )e:m (14)
ot a
~o m Ity .

al=3 A™ cos( ) ettt (15)

In these equations the superscripted constants are Fourier coefficients and 2 is the fre-
quency of the steady state excitation,

The harmonically varying excitations (with respect to time) are also expressed in
terms of Fourier series expansions

< M| i
Pi(x,. 0= Y PTcos( Ye (16
m=| a
~ pmo e
PA(xy 0= Y Pisin( )e (N
: - a

m=

where the P™ are the Fourier coefficients determined from the Fourier formulacs.
Substituting the above expansions into cquation (10) results in an infinite numbes
of uncoupled equations that can be grouped into sets by common indicial values. Thus
aset of five equations and five unknowns is obtained for each indicial value where the
unknowns of these equations are the Fourier coefficients of the displacement scries.
Expressing these equations in matrix form leads to the following general expression for

cach indicial value
2 _ ;

“QAMIU™ | +[B, | [UT ] =[P™] (18)

where [U™] is a vector of Fourier displacement coefficients, [B,, | is a modal stiffness
matrix whose elements are determined by the material and geometric properties of the
structure, and [P} is a vector of the Fourier loading coetticients.

The analysis can be completed in several wrys depending upon the type of infor
mation desired. For instance, the dynamic response of a damped beam to a specitic
excitation can be found through the direct solution of equation (18). If however, the
maodal loss factors are to be determined then the Forced Mode Method |5] is appliced.

40 APPLICATIONS

4.1 STRUCTURAL DESCRIPTION

The beam examined in this analytical study has a length of 25.4 ¢m. The top ana
hottor face sheets of the beam consist of 6 stiffness layers with cach layer having a
thickness of 0.1725 mm. The damping layer has a thickness of 0965 mm The
stftness feyern concast of IMO/2591-6 carbon-epony witih a fiber volume fraction of
60%. The properties of this material are shown in Table | where the disparity in the
axial and transverse cxtensional moduli should be noted. The damping layer consists

BBB-%
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of ISD 112 Scotchdamp SJ2015x. The frequency dependence of the storage and loss
modult of this material are accounted for in the analysis. The mass dewsity of the
damping material is 98 gm/cc.

To study the effects of compliant Jayering on structural damping, the fiber rein-
forced layers adjacent to the dumping layer are given a S0 degree off-zx:is orientation
with respect to the x coordinate direction. The off-axis orientation of the inner layers
makes these layers compliant with respect to the x, coordinate direction. Therefore this
particular type of lamination serves as a compliant layer design.

The notation used to specify the structural arrangement of the damped beams is
identical to that used for laminations of advanced composites except for the addition of
the symbol o which will indicate the presence of a damping layer. For instance, the
bascline structure for this study, so called because it does not include compliunt layer-
g cltects, is designated Og/d /Gy,

4.2 NUMERICAL RESULTS

Frgure 3 shows the loss factors of four different damped beams for the first five
hending modes of vibration (Figures 3 1o 6 repeat results that can be found in Refer-
ences 3 and 4). Here 1t is seen that there is little or no gain in damping for the funda-
mental mode but that in the higher modes the compliant layered laminates have
signiticantly greater Joss factors. (The matching of natural frequencies of the beams
indicates that the gain in damping is not due to changing material properties.)

The goal of o damping design is to rediice resonant stresses and displacements.
This is achieved by increasing the structural loss factor which in a compliant layer
design is accomplished by sacrificing static stiffness (i.e. through the use of 90 degree
tayer orientations). 1t is necessary then to verify that the siructural response actually
decreases in the highly damped but more flexible compliant layer designs. To analyti-
cally test the response, the structures are subjected to forcing functions that approxi-
mately excite the resonant response (ine approximation is introduced by not accounting
for the negligible moment and in-plane components of the load vector that are cequired
by the Forced Mode method for a strict proportionality to the inertia loading). Figure 4
shows the result of this computation where the amplitude of the transverse displace
ments have been normalized with respect to the modal response of the buseline beam.
Except for the fundamental mode where virtually no improvement i< achieved, the
analvsis predicts reduced resonant responses. (The failure of complaint layering to aid
i controlling the respense of the fundamental mode is attributed to the dimensions of
the particutar configuration being examined.)

The conteling parameter inoincreasing the damping in the compliant layered
desipns s the extensionist modulus of the compliant layers. This is seen in Figure §
where the modulus of the inner layers is varied parametricully as o percentage of the
modulus of the outer layers. The loss factor directly increases with decreasing
modulus, This modiion diso controls the phase lag between the damping layer rotation
() and the other displacement degrees of freedom (which: respond approximately

in phase). Figare 6 shows that this phase lag increases with decreasing modulus.
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To test the hypothosms that complaint layering leads te higher energy dissipation
through greater in-plane translations of the face sheets, the following ratios are formed

I
R.”=—g—15—'— (19)
ol
ut,
i d (20)

=10
U3 | pasetine

in which the subscript 115 used o refer (6 4 particular design and the vertical bars
indicate the amplitude of the listed degree of freedom. The ratio R is a measure of
the amount of core rotation (shearing) that occurs per transverse displacement. The
ratio R; is a relative measure of the resonant response. For the first four modes of
response Table 2 shows these ratios and the corresponding loss factors for the baseline
beam and three compliant layer designs. In each mode it is seen that the design that
leads 10 the highest RY also has the lowest resonant response and the highest loss fic-
tor. This indicates that compliant layering affects the response by increasing the rate of
core shearing,

It can be argued that the relationship between the material propertics, the struc-
tural configuration and the dynamic response is very complex and that the benefits in
mechanical behavior obtained in the compliant layer design can be attributed to reach-
ing an optimum balance of conventional design parameters rather than to the compliant
Layering.  Since in the previous analysis the thicknesses of the stiffness and damping
layers were restricted to commercially available sizes this may very well be the case.
To examine this issue an additional analytical test is performed. For an excitation that
excites specific modes of response, fix the thicknesses of the face sheets and vary the
thickness of the damping layer until the response is minimized The result is an optinn
ized damping design for that specific excitation using conventional design practice. At
this point compliant layciing is introduced to see if a further reduction in response can
be achieved. Table 3 shows the results of such an analysis for each of the frst four
modes of response. In each mode the compliant layering design yields an improvement
over the optimized conventional design. Figures 7 and 8, which show this information
plotted against the resonant frequency, indicate that the improvements are not duc to
changes in the amplitude of the forcing function or to changes in the frequency depen-
dent material properties.

5.0 CONCLUSIONS

In order to examine the use of compliant layering in damped structures a struc-
tiral theory was developed and applied to a simple but representative structural sys
tem. The analytical study revealed that compliant layering can increase the cfficiency
of dwmping designs by increasing the modal damping and reducing the forced
response. The work presented here supports the following conclusions that were previ
ously reported in References 3 and 4.

Comphiant layering, which is tne replacement of face sheet material with o less
stiff material at the interface of the face sheets and the damping layer, affects the
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dynamic response of the beam through the alteration of in-plane extensional stiftness
properties. This creates a mcchanism for increasing the rate of shearing in ihe damping
material by increasing the relative in-plane displacements f the face sheets. The raw
of shearing and the associated energy dissipation were found to increase as the
moduolus of the complhiant layer was reduced. However, there is a limitation to this pro-
cess sinee the moduli of the compliant fayer must be high enough o confine the shear
defonmation to the damping layer,

Compliant layering can also be used to reduce the weight of dampet siructures
since comphant materials are generally less massive than stff materiais. For insiance,
metathic face sheets that incorporate a glass-epoxy compliant layer can have improved
dynatnic resistance at a reduction in weight. This same effect can be achieved by
merely removing some of the material on the inner side of the face sheets through
grooving, waffling or scoring this surface.

Compliant layering introduces challenges to the fabrication process since it
involves erther the mating of dissimilar materiis 6] or the unbalancing of quasi-
psotropie lamimates. Also, there will be additional steps in the laminate fabricauon
which will add 1o the cost of building these components. Nevertheless, depending upon
the totdd cost of construction, compliant layering offers an important design optien in
the use of damped bending structures,
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Axial Extensional Modulus 148. GPa

Transverse Extensional Modulus  8.96 GPy

Axial Poisson’s Ratio 35

Axial Shear Modulus 4.48 GPa
Transverse Shear Modulus 2.07 GPa
Axial Loss Factor 00128
Transverse Loss Factor 0o
Shear Loss Factor 0110
Niass Density 1.52 gmy/ec

Table 1 Material Properties of IM6/3501-6 Carhon-Epoxy
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Notation:

¢ vhe total thickness of

o The total thickness of

i

Oy Staetural design,

ot The thickness of the viscoelastic layer.

the layers with a 0 degree orientation.

B Optumized design using conventional design practice.

¢ - Optimized design using compliant layering.

22y The amphitude of the transverse displacement is normalized with respect to the

respotise lound tor the conventional design.

Table 3 Opumized Designs

BBp-1.

Desipn (1) ‘! r’ M 7, Displacement (2)
L mm mm mm
B 00 | 1.035 | 185 | .36 10O
¢ 310 T25 | AKS5 | .42 86
g = — ———
B 000 ) 1038 1 085 | .32 1.00
C 290 745 | 085 | .37 a7
R
B D00 1 1035 | 050 | .29 1.00
. 270 765 1 050 | 34 88
N Sbopasde 4 T T ITTETER T
i3 O00 1 LO3S | 035 | .28 100
¢ 290 745 | 035 | 33 87
_ L L . e

the layers with a 90 degree oriertation (Compliant Layer).
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The Damping Property of Laminated Damping Steel Sheet after Deep Drawing

Abstract

The damping property of laminated damping steel sheet is affected by shear
deformation of viscoelastic layer, a constraint produced by the mutual slip
between two steel sheets under a bending vibration mode. So, the bonding of the
viscoelastic layer to steel sheets is critical to the damping property.

Somet imes, !aminated damping steel sheet becomes unbonded locally from the
viscoelastic layer because of an excessive relative slip between two steel
sheets caused by a deep drawing.

It was found that by wusing the transmittance of ultrasonic wave, the
unbonded area of laminated damping stee! sheet can be detected without cutting
it oft. The validity of this method was confirmed by the T-Peel test which
was conducted after the sheet was cut off.

The damping property measured at the wa!! of a deep drawn oi! pan, was
compared with a one for a laminated damping steel sheet not drawn yet.

It was found that the damping property and the noise reduction effect of

a sheet after deep drawing were reduced in reverse proportion to the widening
unbonded area.

1 Introduction

Steel sheet panels used for main components of a structure induce, in many
cases, vibrations of bending modes and become a source of big noises.

The laminated damping steel sheet is incorporated not only with a normal
function of steel sheet but also with a damping characteristic and, therefore,
a substantial degree of reduction in vibration and noise can be achieved when
it replaces an original steel shéet. This is an attractive feature from the
design point of view since a basic structure of design can be retained as it is
without making anv modifications or alterations. The range of application for
the material of this type has been expanded remarkably after an application to
a deep drawn component par! was made feasible by preat tmprovements achieved in

the sheet ftormability.

There are many covers attached to the exterior of reciprocating engines used
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in the motor vehicles. They are the major sources of noises and, in particular,
an oi! pan has heen known as being one of the big noise sources.

An exampie of noise contribution ratio of various engine components s shown
in Fig. 1. A press formed steel sheet oil pans are penerally used by the
Japanese motor industries. Since a press die used for forming an oil pan of
original steel sheet can be used without supplementing a major modification and
also assisted by improvements achieved in the formability as mentioned above,
the use of laminated damping stee! sheet for the oil pan production was spread
quite rapidly.

Stimutated by such application in massproduction system of the motor
industries, applications by other industries were commenced and grew in a short
period of time. The consumption of such materials, therefore, has grown 1n an
amazing speed in Japan for the last few years.

The laminated damping steel sheet, however, has problems still to be solved.
They are weldability, formability, bolt loosening, loss of bending stiffress,
ctc. Those problems can be solved not only by the improvement in steel sheets
and damping films but also by the special design considerations given to a
portion of structure where such a material is wused. In order to acauire
satisfactory solutions to such problems, it is essential to pget a full
knowledge of the nature of praoblem.

In this paper, a consideration will be given to the effect of deep drawing
to the damping characteristic of the sheet. This is a critical problem as 1t is
closely associated with a loss of fundamental mechanism of the damping eftect.
An oil pan is typically a deep drawn component part and can be a good example
representing an involvement with this problem. |t was quite incidental that the
first full scale use of this material in Japan was directly involved with one

of the most difficult problems.
2 Shear UDeformation of Damping lLayer

When a bending deformation is brought to a laminated damping steel sheet in
a press operation, the deformations as shown in Fig. ? takes place n the
damping layer due to the tensile or compression deformation similar to the ones
given to two steel sheet and the shear deformation caused by the mutual «olhip
appeared between those two sheets.

The damping layer is a f.im of high polymer resin and, therefore, s able to
withstand substantially layer deformation than steei sheets. The tenstile and
compression deformations on high polymer resin are in the same magnitude as

those on surrounding steel sheets and will not create any oproblems by
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themselves, however, since the shear deformation of damping layer is formed by
a force generated by the mutual slip two of steel sheets and the magnitude 15
considerably farger, 1t is sometimes brought intoc a zonc where some problems
may start to appear.

As obvious in Fig. 3, damping layer's shear curve has a linear elasticity
zone and a plastic deformation zone even though they are not defined as
distinctively as a metal. The curve goes through the maximum shear stress point
and i1s terminated by a rupture of layer, that is, a separation. *’ Maximum slip
5n... Prevailing in such an instance will be in a magnitude inherent to the
material and proportional to the thickness of damping layer.

Fig. 4 shows the distribution of mutual slip appeared between two steel
sheets of laminated damping steel sheet when it was bent to most fundamental
V form by a press. Slits were provided on the side of rectangular piece of
laminated damping stee. sheet and the rate of slippage between twa steel sheets
was measured after the piece was bent by a press. Obviously in the figure, the
slip becomes largest in the border zone between circular arc and flat flange
areas.

Fig. 5 shows the distribution of mutual slip between two steel! sheets when a
test strip piece is drawn into a channe!l form. ‘®* The cross section of the
piece 1s resembled to that of an oil pan. Since the fiange zone C~D was held
firmly to prevent wrinkling during the formation and the bottom [ine A~B has a
symmetry agarnst the center line which passes through point A, the mutual slips
between two steel sheets in those two zones are virtuvaily nil. A large mutual
stip appear on the side portion B~C, a portion located between the said two
portions, simply bacause of the right angle bendings provided at both ends of
this portion. The magnitude of mutual slip movement varies extensively and
complextfy while the piece is formed in a press. DOetails of mechanism,
therefore, have not been clarified yet.

When a laminated damping steel sheet is used for an oil pan having a cross
section in a form as shown in Fig.5, therefore, the damping !ayer in the side
wall will be subjected to a large shear deformation. Fig. 5 (b) shows that as a
die corner rvadius is increased, the maximum mutual slip becomes smaller. This
shows that a shear deformation of damping layer can be reduced by a
moditication of pressing die. However it results in restricting die radius Rd

necessary for securing the width of flat range portion.

As shown 1n fig. 6, the damping effect demonstrated by the laminated damping
steel sheet o hending vibration mode s brought forth Ly the shear deformation
ot high polymer resin layer sandwitched between two st.2l sheets. Under such

crrcumstance, theretore, if an excessive shear deformation s loaded on a
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damping layer by a press operation and the layer is seperated from the steel

sheet, the basic function of the damping layer is lost.
3 Ultrasontc Transmittance Measurement of Adhesion of Damping laye:

[he measurement of adhesion of damping layer by an ultrasonic transmittance
method is shown in Fig. 7. Since the condition of adhesion can be checked by
this method without destroying a product, it becomes much easier to check for a
damage of damping layer caused by a press operation as shown in the above the
method can also be applied to an evaluation of laminated damping steel sheet in
the development stage as well as to an conditioning made in a production line.

The gain of ultrasonic transmittance indication should be adjusted to a full
scale "10' on a sheet having a good adhesion before it is formed by a press
machine. The evaluation criteria for a good adhesion shouid be scale B8 or
above, no good adhesion scale 2 or below and uncertain and unreliable adhesion
scale between 2 to 8.

Those criteria are compared with T-Pee! strength in Fig. 8 (2). Thouph they
do not match perfectiy, the correlation between two systems verifies the
sufficient practicability of such evaluation.

Fig. 9 shows the result of ultrasonic transmittance test performed by the
method shown in Fig. 7 on the adhesion of damping layer of an engine oil pan as
an example of laminated damping stee! sheet with a major press formation. It
indicates that separations of damping layer took place locally. The evaluation
was verified by a T-Peel strength test which was performed later on the same
specimen. The result, meanwhile, indicates that an application in a deep dtawn
oil pan gives a laminated damping steel sheet a very harsh processiny.

Shear deformation caused on the damping layer is large on the side wall as
shown in Fig. 5 and, therefore, this area is more susceptible to an incomplete
adhesion which means separation. The possibility of separation is reduced on
the right wall because of a local protrusion provided on it. Some separation
is noted on the bottom surface due to nonsymmetry of the left and the right as
well as the front and the rear walls. It is a very complicated phenomenon.

Fig. 10 shows the result of vibration test performed on pieces of lamipated
damping steel sheet derived from the side and the bottom walls of o0il pan as
shown in Fig. 9. It is indicated that the piece retain good damping property
from the bottom wall and no good one from the side wall. The evaluation,
meanwhile, obtained by the ultrasonic transmittance test was found no pood on
the side wall and good for the bottom. So, reduction of damping chatacleristic

due to partial separations of damping layer can be seen in the graph.




4 Structure Damping in Complex Structure and 7 Value

Required for Damping Treatment

Fig.11 shows an example of structure damping mea~ured on a reciprocating
engine. The basic structure of an engine is constituted by cast iron cy!inder
block, cylinder head, etc. and 7 wvalue of those component materials s
approximately 0.001. According to Fig.1ll, M wvalue for engine structure s
between (.01 and 0.04, about 10 times as large as 7 of materiais

This is due to the structure damping, a combination of friction damping
produced by each bolt joint face, etc. and oil damping produced by an oi} film
tormed on the bearings ot various rotating shafts. Larger 7 values, shown
there while the engine is in a running conrition, are realized by the damping
eftect of oil films formed on the bearings by the rotation of shafts.

For the purpose of an accomplishment of damping treatment for the reduction
of vibration and noise on a very complicated structure as engine, a target 7
to be set is recommended to be larger than 0.1 by the past experiences because

the effect of original structure damping is quite large.
S M Value of Pressed Laminated Damping Stee! Sheet Componant and its Effect

Frip.12 shows the cantilever beam measurement method of loss factor 7 for a
faminated damping steel sheet. A steel spacer is inserted between two steel
sheets 1n lieu of a damping resin laver in the portion where the beam i1s fixed
to the clamping block to accommodate an adaptability to boundary condition.

7 ot laminated damping steel sneet measured by the method shown in Fip.12
before it ts furmed by a press is shown in Fig.13. Nomogram and shift factor
calculeted by the data 1n Fig.13 are shown in Fig. 14, Fig. 15 shows the
temperature and f-equency characteristic of viscoelastic material 1tself.

In consideration of the structure damping in a bolted condition, the method
of 71 medasurement, on an otl pan made of laminated damping steel sheet and
imstailed on an engine, 1s shown n big.16. The temperature of Gii n the ol
pan 1S constant by regulated tu a certain level hecause the damping
characteristic of faminated damping steel sheet 15 greatiy nfluenced by the

temperature. g 17 shows the result of test in Fip. 16,

Tthe solid tine oo Fig 17 s the damping character .stic derived from the

calcalation of viscoelastic data shown n Fag. 15 The fine ind.cates 7 which
toothe same v the une for the laminated damping steei choet not processed by a
press, obvious!y ciear of mutuai stip of stee! sheets, o tajected to o the
same vibhrat coromode Thios sheet 1y g heph temperatory tyie which delivers the
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maximum 7 value at around 70 "C, o temperature at which an oil nan 15 usually
kept while an engine is in operation. It has M value exceeding 0.1 in a wider
range.

In comparison to this solid line, there is a substantial teduction of 7
value on a laminated damping steel sheet after it is formed into an oil pan. As
shown tn Fipg.9, separation ot damping layer takes place more often on the (eft
side wall of o1l pan. For this reason, the reduction of 7 on the left «ide
wall becomes larger to an extent that it goes under 0.1, the value which is put
up as the target for 7 by the past experiences. *

Fig.18 shows the effect of laminated damping steel sheet realized on sound
power level at various points on an outer surface of oil pan while an engine 15
in operation. |t is noted that a close correlation exists between this effect
and the adhesior of damping layer shown in Fig.9 as well as 7 value shown in
Frg.17.

F1g.19 shows sound pressur. measured on the left side wall and the bottom of
ol pan. The plots show that a noise reduction ranging from 1 to 7 dB(A) was
accomplished on the left side wall and 2 to 3 dB(A) on the bottom. Both
indicate that substantial damping was accomplished. Fven though an  accurate
comparison was not made in this case, 60 ¥ to 80 % sound power of the oil pan
is normally supplied by the resonant peak of an outer pane! which yields to a
damping effectively. And, therefore, if a large m wvalue s made available,

much larger noise reduction will become feasible. ¢’
6 Summary

From the above, 1t can be said that a laminated damping steel shiet before
i1t undergoes a press forming operation will have a substantially large T vilue
than those of general structured components but if a separation of damping
layer from steel sheets are caused by the bending operation of press, there
could be a large reduction of M value to an extent that sometimes it poes
under the expected value though all the damping effect 1s nc* necessarily lost.
For the compensation of such reduction, an increase of maximum perm.ssible
mutual sliy , & wax, of damping tayer by material improvement. review of press
operation conditions, increase of layer thickness, etc. are being studied,
however, a modification tn pressed form where the mutual slip can furthe: be

restrained should be explored, too. Increasing the thickness of damping  layer

s relatively simple method but it may create new probiems in bolt foosening or
press tormabitity of steel sheet and, therefore, 1ts application is 1ather
bomited 00 0
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Under the csrcumstances, diversified studies in applied engineerings in the
fields of materials, production engineering, designs, etc. as mentioned above
should be carried out for an accomplishment of noise reduction in a deer drzwn

product such as an engine oil pan as it wa: discussed in this paper.
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PRACTICAL DESIGN AND ANALYSIS OF SYSTEMS WITH FRACTIONAL
DERIVATIVE MATERIALS AND ACTIVE CONTROLS

Daniel R. Morgenthaler *
Martin Marietta Astronautics Group
Denver, CO

ABSTRACT

The fractional derivative model of viscoelasticity is considered to be the most
exact representation of viscoelastic material behavior, as it is based on the molecular
theory of polymers. The classical fractional derivative expanded equations of motion,
however, result in extremely large eigenproblems which are intractable for typical
damped structural systems.

This paper discusses a procedure and numerical algorithms which can be used
in the design and analysis of structures incorporating visconelastic materials. Modal
strain energy methods are used during the preliminary design phases, permitting
inexpensive design iterations and structural modifications. After a satisfactory design
is achieved, the solution to the problem is then generated using the frequency-
dependent complex impedance matrix implied by the fractional derivative model. The
eigensolution is generated using an accelerated complex subspace iteration
procedure with spectral shifting. This technique provides the accurate solution to the
fractional derivative eigenproblem with minimal computational requirements. When
the complex open-loop modes are placed in an appropriate state-space form, active
controls can then be directly applied to the reduced-order model.

The application of the method to an example problem with many degrees of
freedom demonstrates that the method provides accurate closed-loop results, and can
be implemented inexpensively on large-scale structural systems. Most importantly, the
results show that the technique will be required for the application of sophisticated
modern control algorithms to damped systems, and that the use of the modal strain
energy technique to generate the open-loop system model for use in closed-loop
analyses can provide results which are significantly in error.

* Mail Stop H4330
P.O.Box 179
Denver, CO 80201
(303)-971-9387

BCA-1




1.0 Introduction

Vibration contro: through the combined use of passive anc active means has
become an accepted meinod of performance enhancement for space systems witn
requirements for dirensional precision and stability. The Passive and Active Contrci
of Space Structures (PACTSS) Program has snown that very accurate models cf
damped or undamped structures are required for successful impiementation cf
modern control strategies. The Modal Strain Energy (MSE) method is a well known
analytic method of approximating the behavior of damped systems with viscoelastiz
damping ticatments, and this inethod serves as an outstanding tool icr the design c¢f
complex structural systems with damping. As the MSE method is an approximation cf
the behavior of the damped cystern, the results of analyses using the MSE solution
must be used cautiously.

The representation of the behavior of viscoelastic materials is most accurately
described using fractional derivative models [1-5]. These models have their origin i1
the molecular behavior of polymers, and have been shown tc accurately describe tha
behavior of many materials which lose energy in cyclic vicration. However, th3a
fractional derivative representation of material behavior in the modsiing of large-scal3
structural systems has generally been disregarded, due to the absence o numaericil
procedures which solve the squations of motion in an efficient manrner.

This paper discusses a procedure which has been develoned to efficiently
design and analyze structural systems with materiais which can be described by
fractional derivative models, and provides an accurate reduced-order state-space forr
which can be used tu design nigh-authority modern control systems and predict
system psarformance. This method relies on an iterative solution of the diffarential
equations of motion in the Laplace domain, which is termed spectral iteration. This
method is used in conjunction with the subspace iteration eigensol: :on procedure to
develop an efficient numerical algorithm for the solution of large fractional derivativa
eigenproblems typical cf thosa which may be encountered in realistic structural
applications.

The MSE methed s the first step in this iterative process. Therefore, the new
technique can be ncorporated inte an efficient design and analysis methodology
which uses the MSE approximation during preliminary design siages, and improves
the accuracy of the analysis as the dasign rnatures.

Through a sufficiently compiex example problem, the new i:chnique is shown
to provide a system rezrozertauon which may be used in the design of high-authority
control systems, and to predict the closed-lcop performance of passive/active systems.
The number ¢f the degrees of freedom of the example probiem is large enough t2
demonstrate that the procedure can be used for the solution of realistic problems with
viscoelastic damping treatments. It is aiso shown, however, that control designs whicn
arg generated based on a MEL plant mode! and exercised o~ the fractional derivativs
plant may have periormance which 1S seiiously degraded whe<n ccmpared witn
analytic predictions. and may even be unstable.




The new technique can be successfully used for materials represented using
any order fractional derivative constitutive model, and indeed for any representation of
the material behavior in the Laplace domain. The procedure may even prove to be
more efficient in the eigensolution of large-scaie problems which incorporate classical
viscous damping than those which are presently available in many finite element
codes. Further development of this and similar methods should result in iechniques
which can be effectively used on large-scale systems of the future with vibration
control requirements.

2.0 The Fractional Derivative Representation of Material Behavior

The fractional derivative model of viscoselasticity is developed, hased on a
fractional derivative representation of the relationship between stress and strain within
a viscoelastic material [1,2].

M B N o
3 b, D ™t} +1lt) = Goylti+ Y, G,D " {yit)
M= N=1 (1)

where 1 (t) is the material stress, y(t) is the material strain, the by and G, are real
constants, and Dk is the fractional derivative operator of order k.

A 5-parameter model cari be developed which includes a single fractional
derivative of both stress and strain. In the Laplace domain, this provides a Young's
modulus 2nd shear modulus which are the ratios of the Laplace transforms of stress
and sirain, and depend on the Laplace variable (frequency). Using the 5-parameter
model, the shear modulus can be expressed:

- a
T G0+G1:

7o) 1+bs )

An additional constraint on the representation in equation (2) is that the values
of the powers a and p must be equal to be consistent with thermodynamic
considerations [3]. This representation of material behavior is consistent with the
macroscopic behavior of many rubbary and glassy materials, and is based on the
molecular theory of polymers. Experimental data of the frequency-dependent
behavior of a material can be fit using the fractional derivative mode! to aliow the
description of the material behavior in the frequency domain.

As an example, consider the viscoelastic material DYAD-606 from Soundcoat.
Experimental data previously gathered for use on the PACOSS program was
available for this material at 68°F in the frequency range from 1 to 46 Hz. This raw
experimental data was fit using the 5-parameter mecdel and a nonlinear error-norm
minimization process. Using this technique, the five parameters of the mode! which
best fit the data were:

BCA-3
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G, = 246.45psi, G, = 534.22 psi, b = 0.1043(sec)” ** o = 0.7049,p = 0.4885

Graphs of the experimental data and the resulting fractional derivativ:2
representation of the frequency-dependent shear modulus and material loss factor ar:
given in Figures 1 and 2. Notice that the agreement between the experimental data
and the fractional derivative model are exceptional for this material. However, the tw»
fractional powers (a and ) differ for this fit of the material properties. Trie cause of this
anomaly is unknown, and a higher-orcer fractional derivative model may be requirec.
The above parameters were used in the subsequent example problem which included
this viscoelastic.

A similar fit was performed for the viscoelastic material 3M-366, and 68°l-
experimental data was also available for this material from previous PACOSS work.
The optimum model parameters for this material were:

G, = 7.9856 psi, G = 7.6992 psi, b = 5.29 x 10 *(sec|>®®> o = 0.6053,B = 0.6053

The agreement between the experimental data and the fractional derivativ 3
modei were equivalent to those found for DYAD-606. In this case, however, ever
though no constraints were imposed on the model parameters, the optimum values of
the fractional derivative orders were the same. This is consistent with tha
thermu dynamic requirements of the 5-parameter model. For both of these materials,
an outstanding representation of the frequency-dependent material properties was
achieved using the 5-parameier modei. This agreement demonstrates th3
applicability of the fractional derivative model to many viscoelastic materials.

3.0 The Modal Strain Energy Method In the Approximate Solution
of the Open-Loop System

The MSE method is a well known method of approximating the eigenvalues
and eigenvectors of a dynamic system which includes viscoelastic material damping
treatments. This method assumes that the real modes associated with the real part of
the system stiffnass matrix evaluated in the neighborhood of thc eigenvalue are a
sufficiently accurate approximation to the complex system eigenvectors. Ths
importance of the MSE method as a design tool cannot be overemphasized, and thz
method allows the economical design of damping treatments for complex structures:.
This method approximates the solution to the frequency-dependent complex
eigenvalue problem, and provides insight to facilitate effective structural modifications.

In general, the frequency-dependent complex stifftness matrix {complex
impedance matrix) of a system which includes fractional derivative materials can b2
written as a sum of contributions from elastic elements and from each type of
viscoelastic material. If the Poisson's ratio of the material is frequency independen:,
the total stitfness matrix can be written:
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nvm .,

K(s) = Kgi+ 2, Gy (8) * Ky,
- 3)

whele:
K (8) = the complex impedance matrix as
a function of the Laplace variable
Kei = the frequency independent stiffness
matrix associated with all elastic
elements
G'; (8) = the frequency-deﬁendent complex shear
modulus of the it" viscoelastic material
Ky, = the stiffness matrix associated with
all elements made of the ith
viscoelastic material, assembled with
a unit shear modulus
nvm = the number of viscoelastic material
types in the system

The MSE metnod then assumes that if the modes of the system are found using
the real part of the complex stiffness matrix which is assembled using viscoelastic
material properties on the imaginary axis (at 8 = Iw), that these vectors are sufficiently
"close" to the actual system eigenvectors, and that these approximate vectors ars
uncoupled through both the real and imaginary parts of the stiffness matrix.

Therefore, the typical sequence of steps in an MSE analysis are:

1) Form the real part of K(8) using an appropriate approximate value of the
eigenvalue taken along the imaginary axis.

2) Using the real part of K(8) and the system mass matrix, calculate the real
eigenvalues and eigenvectors.

3) Store those eigenvectors which are in the neighborhood of the approximate
frequency value assumed in step 1.

4) Repeat steps 1 through 3 until all approximate eigenvectors in the frequency
range of interest have been found.

5) Determine the approximate modal damping ratios using the MSE
distribution.

6) Construct the state-space form of the MSE mode! of the piant.

This procedures provides a set of q approximate mode shapes, frequencies,

and damping ratios found using the MSE analysis procedure. The damping ratios of
the system are usually computed using the formula:

NE
¢ = 32 SEym,
j=1 (4)
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where:

§ = the approximate modal damping ratio
of the jth mode
SEj; = the percentage of modal strain energy
in the ith element in the jth mode
n = the loss factor of the ith element in the
neighborhood of the jth modal frequency
NE = the number of system finite elements

This MSE procedurs is equivalent to the following matrix operations:

1) Using an approximate eigenvalue on the imaginary axis, construct the
stiffness matrix K(s) using equation (3) and the system mass matrix.
2) Decompose the stiffness matrix into its real and imaginary parts, K,
and Kg.
3) Soive the real sigenvalue problem (Kgr- w2+« M) ® =0 for the q lowest
eigenvalues and eigenvectors.
4) Mass normalize the eigenvectors from step 3.
5) Using the modes which are near the approximate frequency, construct
the matrix products:
PT-MD=1
OT e KR+ @ = 0?2
OT « Ky + @ = Ky (5)

6) Form the second-order modal equations:

. 2 T
P+l Kp*p+ew *p =0 of

(6)
7) Assume that the generalized velocities are equal to im times the
generalized displacements, and neglect the off-diagonal terms in Kp;:
. ) 2 T
p+Dv|'p+0) 'p:(b of (7)

where:

Dvi(},)=Kmi(J,)/ (], ])

8) Under the above assumptions, the terms in the diagonal matrix Dy, are
2:(je0).

9) Construct the state-space form of the plant using an assemblage of the
appropriate modes, natural frequencies, and damping ratios:
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This state-space form of the open-loop system can be used to design a control
system to provide desired closed-loop performance characteristics of the MSE plant.
However, as numerous assumptions are used in the computation of the open-loop
plant, the quality of the state-space model cannot be assessed. It will be demonstrated
through an example problem that the effects of these assumptions can result in
significant errors in the behavior of the closed-loop system, if the MSE plant is used in
control design and performance evaluation.

4.0 The Eigenstructure of the Fractional Derivative Eigenvalue Problem

It is necessary to develop the definition of the eigenvalues and eigenvectors of
systems which include viscoelastics modeled using fractional derivatives, to allow a
comparison with the approximate values derived from the MSE method and their
improvemsant. The transformed equations of motion for the system can, in general, be
written in the Laplace domain as:

M- 3%+ K(s)]* X(8) = F(s) )

where:
M = the system mass matrix
K(s) = the complex frequency-dependent impedance
matrix of equation (3)
X(s) = the Laplace transform of the system displacements
F(s) = the Laplace transform of the applied forces

The system dynamical matrix can now be defined as a function of the Laplace
variable. This matrix is:

2(s) = M-s2+K(s) (10)

For non-trivial solutions of the homogeneous differential equations, the
dynamical matrix must become singular. Therefore, similar to the definition for
classical undamped or viscously damped systems, the definition of an eigenvaiue A of
the system with fractional derivative materials is:
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MsZ+K(s)|, ., =0

(11)

The eigenvalues can be determined by expanding the determinant of the
dynamical matrix and finding zeros of the characteristic polynomial. However, the
matrix K(s) involves the Laplace variable raised to fractional powers. Therefore, the
roots of this complex fractional-order characteristic equation are generally difficult to
obtain. A surprising result of this development is that there are, in general, infinitely
many roots to this equation for a finite number of degrees of freedom, if the fractiona!
powers cannot be expressed as a rational fraction. If the iractional powers can be
expressed as a rational fraction r/m, then there are N(2me+r) eigenvalues where N is
the number of system degrees of freedom. The additional eigenvalues are located on
branches of the multi-valued fractional power function and contribute to response of
the system by an integral term along a branch cut [3].

All the eigenvalues of the system can be found by expanding the equations of
motion to clear the fractional powers [3,4,5], if the powers are expressible as rational
fractions and all viscoelastic materials in the system have the same dencminator m. A
state-spaca model of the expanded system equations of motion may then be
constructed in either physical or generalized coordinates [6].

The associated eigenvector for any known eigenvalue can be found by solving
the homogeneous form of equation (9) for the mode shapes. To find a selected
eigenvalue and eigenvector, a procedure which will be termed spectral iteration may
be used. In this procedure, an approximate value for an eigenvalue is used to
construct the complex impedance matrix, and a complex eigenvalue problem is
solved. This procedure is given in equation (12).

Solve equation (7) for @ and Anew USiNg an assumed value of A:

2
M2 +K(x)]-o =0

new

(12)

A simple method of obtaining a selected eigenpair is to iterate using equation
(12). Using an approximate eigenvalue 1, the matrix function K(1) is evaluated, and
the eigenvalues using this complex matrix are found. If A is a good approximate value,
then one of the eigenvalues found will be "close" to the initial guess. This new guess
is then used to recalculate the complex stiffness matrix. By performing this process
iteratively, the procedure will converge to an exact eigenvalue and eigenvector of the
system.

This is similar to the inverse power method developed in {7] for the solution of
the fractional derivative eigenproblem, where a solution procedure based in the
inverse power method with spectral shifting is used to evaluate the eigenpairs of the
system. This procedure of spectral iteration can be further developed and improved to
provide computationally inexpensive solutions. It will be shown that the MSE method
is a form of the spectral iteration procedure, and further improvements to the MSE
solution are possible at minimal computational expense.
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For the solution of large-scale dynamic systems with fractional derivative
materials, the major objective is to construct a reduced-order state-space model of the
structure from its finite element representation. Typically, only a small subset of the
system eigenvalues and eigenvectors will be required; and the solution of the
expanded fractional derivative equations of motion for a system with many degrees of
freedom would be computationally infeasible or even impossible if several materials
are used. Therefore, for a typical structural application, the concern is to locate
eigenvalues and eigenvectors of the system within a selected spectral radius from the
origin of the Laplace domain (i.e., the q smallest eigenvalues). Expansion of the ideas
of the MSE method and spectral iteration into a procedure consistent with subspace
iteration allows the evaluation of the desired eigenpairs in an efficient manner.

5.0 The MSE Method and Standard Subspace Iteration

The MSE method provides an approximation to the q lowest eigenvalues of a
damped system. In the solution of the fractional derivative equations, it is
advantageous to consider the mathematical basis of the MSE method and means to
improve the accuracy of the approximations. Therefore, consider the form of the
stiffness matrix developed in equation (3), and the reduction of the mass and stiffness
matrices in equation (5) using a set of @ MSE approximate vectors as a vector basis
(subspace):

T 2 T T
O  MDsS + O *K(S)*D|*P(S) = D *F(s) (12)
These reduced equations can be written:

MP.os2ikbs %MG;(S)-K: P(s) = F ()
=1 (14)

where the reduced matrices are of size q x q and are formed by matrix triple products,
and the forcing vector is a q x 1 generalized forcing vector:

T
MP-o M-®
R T

Kei =@ Kg° @

R T
Ky =® K, ®

R T
F(s) = +F(s) (13)

It is obvious that since the eigenvectors computed using the MSE method will

generally be computed using several real stiffness matrices, the reduced mass matrix
will not be an identity matrix, and the real part of the reduced stiffness matrix will not be
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diagonal. However, these matrix equations are similar in form to those in equation
(12) and can be solved using spectral iteration in a similar manner,

i.e., solve:

R ,2 R
M oAt K A)|*¥ =0 (16)

for the solution vectors ¥ and the eigenvalues A using spectral iteration.

This iteration process is a Ritz analysis with the MSE method approximate MSE
vectors oyge as the solution space [8]. The approximate eigenvalues of the full system
are the eigenvalues A of the reduced system, and the approximate eigenvectors are
the complex vectors:

If the range of the approximate MSE vectors spans the solution space of the
exact eigenvectors, the eigenpairs generated in this manner are exact solutions for the
system. Notable cases where this will occur are when the damping in the modes is
negligible, or if the entire system is composed of damped elements with an identical
fractional derivative representation (i.e., proportional damping). In these cases, a set
of real vectors can be found which provides an invariant subspace of the fractional
derivative eigenvalue problem. The MSE approximation for the natural frequency and
damping will be in error, however, even for a system of all damped elements.

In this manner, the MSE method can be shown to be an uncoupled Ritz analysis
with the MSE vectors as a subspace. In fact, it is a Ritz analysis using uncoupled
vectors (the Rayleigh Quotient) which was first used to derive the modal strain energy
method [9]. It is assumed in the MSE method that these vectors are uncoupled in
equation (16); therefore, the assumed reduced basis eigenvectors form an identity
matrix.

The improved solution of the eigenvalue problem with a single spectral iteration
is an inexpensive means of improving the quality of the solution, as it merely requires
the generation of a real reduced mass matrix, a real reduced elastic stiffness matrix,
and as many real reduced viscoelastic matrices as there are types of viscoelastic
materials. The reduced complex impedance matrix is then formed by simply adding
the reduced elastic stiffness matrix and the reduced viscoelastic matrices multiplied by
their respective complex shear moduli. Therefore, to generate the initial reduced
problem, products which involve only real matrices and real vectors must be formed.
The solution of the q x q reduced-order problem by spectrai iteration will be
inexpensive due to the small order of the system.

In general, the real MSE vectors will not provide an invariant subspace of the

fractional derivative problem. Therefore, a method is required to improve the
subspace and allow a more accurate representation of the solution. To examine
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methods of subspace improvement, consider the subspace iteration eigensolution
method for real, constant stiffness and mass matrices.

Subspace Iteration Steps:

1) Select an initial subspace of vectors ®k of size N x p where N is the
system order, and p is larger than the number of desired vectors, q.

2) Decompose the stiffness matrix into its L D LT factorization

3) Perform a simultaneous power iteration on the approximate vectors
using forward elimination and back substitution,

i.e., solve for ®dy,q using:

2
Ke®Dy,y= MeDyedy (18)

4) Create reduced mass and stiffness matrices:

T
Mgt = O ° M-,

T
Kk+1 = ¢k+1 ¢ K * ¢k+1 (1())

5) Solve the reduced eigenproblem for Ax,1 and Wk,1.

R 2 R .
Mk+1'xk+1+Kk+1 'an =0 (20)

6) Orthogonalize the current subspace:

Dppr = Ppy1* ¥y 1)

7) Return to step 3 with @, as new subspace, and iterate until convergence.
8) Perform a Sturm sequence check to determine if all desired eigenvalues
and eigenvectors have been found.

This procedure may be used for the fractional derivative eigenvalue problem,
with spectral iteration performed at step 5 for each major iteration. The greatest
expense of this procedure, however, would be the computation which improves the
subspace at step 3. For the fractional derivative eigenvalue problem, the "stiffness”
matrix is complex and a function of the eigenvaiue; and it is infeasible to factor the full-
system size complex matrix and perform several complex matrix/complex vector
products at each iteration. This is the major deficiency of the inverse power method

with spectral shifting presented in [7], as a complex factorization was used for each
powaer iteration.
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To alleviate these difficulties, a method of accelerated subspace iteration which
does not include the inversion of a matrix was developed for use in the solution of the
fractional derivative eigenvalue problem. This procedure allows the improvement of
the subspace with a minimum computational burden, and rapid convergence to the q
smallest system eigenvalues.

5.0 Accelerated Subspace iteration for the Solution of the Open-Loop
Eigenvalue Problem

Subspace iteration was first developed by Bathe in the early 1970s [10].
Further advances in the technique were subsequently developed and were
designated accelerated subspace iteration [11]. in this procedure, Lanczos vectors
are used to generate the initial subspace, and spectral shifting during the power
iterations is performed using the approximate inversion method of successive
overrelaxation. This method allows fewer than q vectors to be used as the p size
subspace, while in the standard subspace iteration method usually the minimum of
2-q or q+8 vectors are selected as a subspace. Using several of the ideas of the
accelerated subspace iteration, along with tha spectral iteration technique and several
new developments, an accelerated subspace iteration procedure for the fractional
derivative eigenvalue problem was developed.

The basis of this technique is a preconditioned conjugate gradient procedure
developed specifically to allow the iterative solution of linear equations "ith a
symmetric coefficient matrix which is complex,

i.e., the solution technique was developed to solve the linear equations:
A‘x=Db (22)

where the matrix A is an N x N symmetric complex matrix, and the complex vectors x
and b are of size N. The derivation and the numerical algorithm will not be discussed
here, however, the use of the technique will be described. The technique splits a
shifted dynamical matrix into two components: Ko and AK+(2ou+u2)M, where p is an
appropriate spectral shift at each step selected to allow rapid convergence to a
particular eigenvalue, and « is a shift used in the generation of the matrix Ko. The
updating procedure which is used to replace step 3 in the standard subspace iteration
is then the formula:

2

where the residual error after j iterations is defined as:

2
rl = Ko' ¢]+1 + (AK + 2au]+1M + “’]+1M) * (D|+1 (24)

The search directions are generated by conjugate gradients, and are selected

to minimize the residual while being orthogonal through the dynamical matrix to all
previous residuals and approximate modal vectors. This method is, therefore, similar
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to the preconditioned method of conjugate gradients [12].; however, it was designed to
allow complex matrices. The search vectors can be interpreted as Lanczos vectors
selected to provide the greatest reduction in the norm of the residual vector on each
step. With a proper selection of the matrix Ko, this procedure will converge in few
iterations to an eigenvector which is closest to the shift point a+p. An excelient
selection of the preconditioner is the shifted real stiffness matrix (shifted by a value of
«) computed during the modal strain energy procedurs (it can be assumed that a
shifted real stiffness matrix (Kmse + a M) was factored during the solution of the MSE
real eigenvalue problem):

Ko = (K,,E+a°M)-1 (25)

This selection results in low rank of the AK matrix, as this matrix contains on'y
terms from viscoelastic elements and, therefore, has many zero rows and columns.
The eigenvalues of the matrix Ko-1 » AK will be small, as the MSE stiffness matrix is
"close" to K(s). These properties of AK and Kg1 « AK provide rapid convergence of
the iterations [12].

Convergence of this conjugate gradient procedure results in an eigenvector/
eigenvalue of the system. Very importantly, the iterations need not be performed uniil
convergence in the accelerated subspace procedure, as the objective of step 3 in the
standard method is simply to improve the subspace. The linear combination of
Lanczos vectors generated as search vectors provide a good set of basis vectors with
which the subspace can be improved, even though the iterations have not converged.
Therefore, in the accelerated subspace procedurs, the iterations implied by equation
(23) are only performed once, and these vectors are used as a new vector basis. After
orthogonalization, a further basis improvement is performed.

In summary, the steps which comprise the accelerated subspace iteration
procedure for systems which include materials modeled with fractional derivatives are:

1) Select the MSE solution vectors as the initial subspace.

2) Create the reduced mass, elastic stiffness, and viscoelastic stiffness matrices
as per equation (15). Store all matrix/vector products such as Kgj * ®y.1.

3) Perform spectral iteration within the subspace to compute new approximate
eigenvalues and eigenvectors.

4) Update matrix products using reduced basis modal transformation.

5) Improve the basis vectors, and update matrix/vector products using the
complex conjugate gradient procedurs.

6) Return to step 3 using new basis vectors and updated matrix/vector
products.

7) lterate from steps 3 to 6 until convergence of the subspace.

Notice that the only matrix/vector products required in the solution procedure
are contained in the conjugate gradient algorithm, with two plus the number of
viscoelastic materials matrix/vector multiplications required for each basis vector per
conjugate gradient iteration. Also, the total solution subspace need not be updated cn
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every aration; and only the vectors which correspond to the eigenvalues which have
not yet converged need be updated each time.

The above procedure can be considered a hybrid of several highly successful
eigenvalue extraction methods: the power method with spectral shifting; Ritz analysis;
and Lanczos methods, which are combined with spectral iteration to allow for the
frequency dependence of the stittness matrix. Experience on example problems
shows that this method is very effective for solving the fractional derivative eigenvalue
equations for the invariant subspace corresponding to the lowest system eigenvalues.
A complex Sturm sequence check can be used to verify that all eigenvalues/vectors
within a given spectral radius from the origin have been found by factoring a shifted
impedance matrix; however, it may be assumed that the initial MSE solution provided
approximations to all eigenvalues within the search region.

7.0 Generation of the State-Space Plant Model

After a selected number of modes of the open-loop system have been
generated by the above procedure, an appropriate state-space description of the plant
is required for performance evaluation and the generation of vibration control systems,
if needed. This state-space model should allow the use of available modern control
algorithms to be used to generate a compensator which will provide desired
performance of the closed-loop system. Therefore, a complex modal formulation of the
plant was developed to obtain this state-space description. This formulation finds a
viscous representation of the plant which has identical eigenvectors and eigenvalues
to the fractional derivative system. This is an approximation, however, it provides the
most accurate viscous representation possible.

The generation of the modal state-space equations begins with the equations of
motion of the full-size open-loop system in the Laplace domain. An appropriate
general form of these equations is:

[ M0 HX(s).s].s _[—Cn(s) -KR(S)}.[X(S).S]+ E(s)
'K X - -K O X O
0 R(S) (s) a(S) (s) o6
where:  Kg(s) = feﬂl(K(S))-rrn%%-imag(K(s))

_ Imag(K(s))
Cris) = Imag(s)

Notice that these equations provide an identical impedance matrix for the
fractional derivative system and the viscous system. By solving the equations in the
Laplace domain for a system eigenpair, a modal substitution which uncou; .es the
equations with K(s) evaluated at an eigenvalue can be constructed. An appropriate

modal substitution is:
X(s)ss| |P-A .p
[ X(s) ]‘ o J )

(27)
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or X =vyP

where:

® = A system eigenvector found using spectral
iteration

A = A system eigenvalue
P(s; = the Laplace transform of the generalized
coordinate

With the substitution of the transformation as given in equation (27), the single
coordinate which corresponds to an eigenvector of the fractional derivative system
coordinate can be uncoupled from all other coordinates. This is achieved by noting
that the matrix on the left-hand side is symmetric; and that if all the eigenvalues of the
complex system were found using this constant value of K(s), the full-size matrix v
would be orthogonal to this matrix. Therefore, with the correct normalization, the left-
hand side can be transformed to an identity matrix. This yields an uncoupled equation
for a single generalized coordinate and also for its complex conjugate. The correct
normalization for the individual eigenvectors is such that:

T 2 T
D MOl - KAL) D =1 (28)

where @ is a single eigenvector, anc .. is its associated eigenvalue.

Notice that the complex conjugate modes and natural frequencies and their
normalization are found using this method. This is consistent with the fractional
derivative material representation, as the fractional derivative description provides a
coinplex conjugate shear modulus at a complex conjugate value of the Laplace
variable:

K(s) and Kig) are related by:
K(s) = K(s) (29)

where ~ denotes complex conjugation.

Therefore, ine complex conjugate eigenvalue and eigenvector of any solutions found
in the accelerated subspace procedure are also eigenvectors/eigenvalues of tha
fractional derivative system. This is required to proviue ieal, stable solutions in tha
time domain. An additional requirement on the complex impedance matrix K(s) is that
it must smoothly become a real matrix at the origin of the Laplace domain. This
ensures causality of time domain solutions, and it is obvious from the 5-parameter
model that this requirement is met.

Finally, a normalized modal matrix can then be assembled which provides the
transformation of the equations into truncated modal form in the Laplace domain:
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Do DoA

w:
6] o

(30)

where @ is an N x q matrix of norn.alized eigenvectors, and X is a q x q matrix of
eigenvalues. Using this modal transformation and taking the inverse Laplace
transform of these equations yields the final form of the state-space equations in the

time domain:
p| [*o0 [p] -7 [1
=1 ~ff~]l+Wv °
p OA] LP 0

PJ (31)

These equations are in standard first-order state-space form and, therefore, can
be used in conjunction with modern control algorithms to design a control system or
predict system performance.

6.0 Applicatinn of the Solution Procedure to the PACOSS
Multi-Actuator Control Experiment

To show the applicability of the procedure to the solution of realistic dynamics
and control problems which incorporate viscoelastic damping treatments, an example
system was selected. This system was the PACOSS Multi-Actuator Control
Experiment (MACE) shown in Figure 3. This structure was previously constructed
under the PACOSS Program to verify the performance of the control system hardware
using modern control algorithms in a multi-actuator digital control application.

The original MACE hardware consisted of three proof mass actuators mounted
to a series of flat aluminum beams. The system was hung from steel cables at three
points with 60.9-Ib/in. springs located at the top of the suspension. Constrained layer
damping treatments using DYAD-606 damping material with steel constraining layers
were applied to six locations on the beam members. These damping treatments
provided from 0.5% to 2% critical damping in the modes of the system below 15 Hz.

While the original uesign of the MACE was satisfactory for the purposes of
validating the successiul operation of the PACOSS control system hardware, the
relatively low damping levels are not characteristic of those which can be achieved in
damped systems. Therefcre, several modifications to the original design of the MACE
structure were made for this example problem. First, the thickness of the DYAD
damping material was increased trom 0.050 in. to 0.120 in. to increase the damping
performance of the constrained layer treatments. Second, viscoelastic dampers were
designed which were placed in parallel with the susper.sion springs. These dampers
use 3M-966 material in a configuration such that the spring constants in units of Ib/in.
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Figure 3 - Photograph of the PACOSS Multi-Actuator Control Experiment
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were 0.25 multipiied by the material shear modulus in psi. Finally, four ideal actuators
with ideal inertial velocity sensors were used instead of the three proof mass actuators
used on the actual hardware. Four actuators were used to remove the actuator from
the symmetric axis of the structure and to increase the control authority for anti-
symmetric modes (Figure 4).

A finite element model of the damped structure was created using
MSC/NASTRAN (Figure 5), which included the typical plate and solid element
modeling of the constrained layer damping treatments as well as the pendulum
behavior due to the suspension. The full-system mass matrix, the elastic/differential
stiffness matrix excluding the damping materials, the stiffness matrix associated with
the DYAD-606 material, and the stiffness matrix associated with the 3M-966 shear
dampers were then assembled. Compatible stiffness matrices were easily formed by
altering the material properties of the various components to be a small number. For
example, to form the DYAD-606 stiffness matrix, the moduli of the main members and
constraining layers, the suspension spring constants, and the 3M-966 moduli were set
to extremely low values; and the modulus of the DYAD was set to unity. The full-
stiffness matrix for any value of the Laplace variable could then be easily constructed
by addition of the constitutive matrices, as per equation (3).

A pertormance metric was selected for the svstem, which was the vertical
motion of a single point on the structure for noise inputs at the actuator locations. The
objective to be achieved was a factor of 100 decrease in root mean square (RMS)
motion of the performance point for white noise inputs from 0 to 30 Hz, as compared to
a system without added damping treatments or active controls.

A modal strain energy analysis was performed on the system to approximate
the open-loop modes, natural frequencies, and damping ratios in the frequency range
from O to 30 Hz. The real stiffness matrix was assembled at six selected frequencies
which were known to be "close” to system eigenvalues. The standard MSE method
was used, with the modes nearest the corresponding frequency used to construct a
state-space model of the plant as detailed in Section 6.0. Table 1 provides the open-
loop frequencies and damping of the system computed using the MSE method.

Figure 6 provides the frequency response of the performance point motion for
inputs at actuator #2, for both the MSE system and also for the system with 0.2%
critical damping in the modes. Notice that the system has high modal density in the
0 to 30-Hz frequency range. The addition of passive damping treatments to the system
lowers the RMS response by approximately a factor 5, so that active control is required
to further reduce the system RMS response by a factor of 20.

Two active control algorithms were considered for the MACE example problem:
local velocity feedback, and Linear Quadratic Gaussian with Loop Transfer Recovery
(LQG/LTR). For local velocity feedback, a feedback gain of 0.25 Ib-sec/in. was Lsed for
the inertial velocity at each of the actuators. The closed-loop response of the system
was generated using the MSE state-space model, and compared with the open-loop
system and the exact frequency response of the closed-loop fractional derivative
model (Figure 7). Notice from the Figure that the agreement between the exact
solution and the MSE solution is relatively good, differing only in some frequency
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Figure 4 - Schematic of MACE Example Problem

Figure 5 - NASTRAN Model of the MACE Example Problem
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Table 1 - Natural Frequencies and Damping Ratios of the MACE
Computed Using MSE

"Frequency| Damping Frequency | Damping
Mode # (Hz2) Ratio (%) Mode # (Hz2) Ratio (%)
1 0.28 0.0 11 12.6 7.9
2 0.28 0.0 12 131 4.1
3 0.28 0.0 13 15.4 3.3
K 2.83 5.0 14 21.8 1.2
5 2.98 4.0 15 24.3 5.1
6 3.46 3.8 16 25.7 2.5
7 4.82 5.4 17_ 30.5 3.9
8 6.18 4.2 18 34.3 3.3
9 8.17 7.0 19 37.1 3.8
10 10.3 2.7 20 37.8 3.7
o Performance Point Response for Damped and Undamped System
101 ¢ — T v T v
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Figure 6 - Performance Point Frequency Response for Undamped System

and MSE Damped Solution
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Figure 7 - Local Velocity Feedback Cilosed-Loop Response
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ranges. The reduction in RMS response in this case is a factor of 3, when compared to
the passively damped system. This agreement is consistent with PACOSS experience
on the Dynamic Test Article [13], which used the MSE method to accurately predict the
closed-loop response of a damped system with a local velanity feedback controller.

The exact frequency response of the closed-loop system was generated, using
direct inversion of the closed-loop impedance matrix at each frequency point. This can
be accomplished for an arbitrary controller by converting the compensator into an
equivalent N x N frequency-dependent impedance matrix and adding it to the open-
loop impedance matrix,

i.e., determine the N x N frequency-dependent matrix G(s) which
describes the Laplace transform of the control forces in terms of
the motion of the structure. Then the Laplace transform of the
closed-ioop structural motion is:

Xc(8) = Hefs) « F(s)

-1
Hefs) = [M -84 K(s) - G(S)] (32)

Using this relationship, the closed-loop frequency response between applied noise at
the actuators to the performance point motion can be computed at s=lw by direct
matrix inversion.
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A compensator was also designed to control the MSE state-space model using
the LQG/LTR algorithm. In this algorithm, a linear quadratic regulator is designed
which provides the desired performance characteristics using full-state feedback. A
linear quadratic estimator is then designed which approaches the full-state feedback
performance by increasing a loop-transfer recovery parameter in the estimator design
process. The regulator was designed so that the desired factor of 20 reduction in RMS
response over the damped open-loop plant was obtained, and the loop-transfer
recovery parameter was selected to the minimum value which provided acceptable
performance of the estimator.

The exact closed-loop frequency response of the system was then generated
using the LQG/LTR compensator designed for the MSE plant. A comparison of the
open-loop response, the MSE prediction, and the exact closed-loop frequency
response are given in Figure 8. Notice that there are large variations between the
frequency responses predicted using the MSE plant and those found using direct
inversion of the closed-loop impedance matrix. Although the closed-loop system does
perform better than the open-loop system, in the 20-Hz region the closed-loop
performance is actually amplified over the open-loop response. Furthermore, the
reduction in RMS response is only a factor of 11, whereas the MSE plant predicts a
reduction of a factor of nearly 21. This large discrepancy shows that for sophisticated
active control algorithms, the MSE state-space modei does not adequately describe
the dynamic characteristics of the relatively simple MACE plant. A more accurate
description of the open-loop system is required for a control design model.

A state-space model of the open-loop system was then generated using the
accelerated subspace iteration procedure as described in the previous sections. This
model was then used to design an LQG/LTR compensator to reduce the RMS
response by a factor of 20, similar to the MSE design. The closed-loop frequency
response predicted using this state-space model was then compared with the exact
closed-loop solution. Figure 8 shows a comparison of the damped open-loop system
frequency response, the exact open-loop frequency response, and the modal closed-
loop response generated using the exact method and the reduced-order state-space
model. Notice that there is good agreement between the open-loop performance
predicted using the 40-state modal plant model and the exact response found by direct
inversion.

Most important for the closed-loop system, the reduction in RMS response using
the exact method is a factor of 21, which is the predicted reduction. The closed-loop
performance predicted with the state-space model agrees well with the exact solution,
although there are some differences in the frequency response. While the open-ioop
plant model accurately predicts the closed-loop response in this case, it may not in
general. This is due to the assumption that the plant has viscous damping, which
provides a plant which is locally accurate but may not be accurate if the poles are
significantly altered by the controller. This is to be expected, as in the formatio:. of the
open-loop plant, the poles which describe the variation of the viscoelastic properties
with frequency have been truncated. The introduction of the controller alters the
eigenvalues of the plant and, therefore, a closed-loop eigenvalue problem must be
solved with spectral iteration to achieve the best agreement with a modal model.
However, the closed-loop performance shows that the described procedure provides
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an accurate reduced-order plant model which allows the design of a controller which
provides the desired closed-loop performance.

The variation between the MSE and complex modal open-loop plant models
can also be seen in the comparison of the open-loop frequency responses. The
greatest variation between the models is typically in the phase of the frequency
response. As an example, consider the comparison of the phase of the frequency
response of the MSE model, the complex modal model, and the exact solution given in
Figure 10. Notice that there is nearly e::act agreement between the complex modal
model and the exact solution, but there is a large discrepancy between the phase of
the MSE frequency response and the exact frequency response in several frequency
ranges. At a frequency of 25 Hz, the phase of the MSE frequency response is actually
180° out of phase with the exact solution. This phase difference can cause significant
performance degradation or even instabilities of the closed-loop system.

For the accelerated subspace procedure to be used for the analysis of actual
systems, the cost of the procedure must not be excessive. Therefore, a comparison of
the computer requirements for the MSE solution and for the improvement of the MSE
solution using accelerated subspace iteration was made. Table 2 provides a
comparison of the solution times for the two methods.

These computations were performed on a SUN 3/50 workstation, with the plant
model having 279 degrees of freedom. The computer times represent elapsed time in
seconds. To facilitate these computations, the full-size system matrices were reduced
from nearly 1100 degrees of freedom by a Guyan reduction using viscoelastic
properties in the middle of the desired bandwidth. This reduced mode! was then
considered the exact model description. The MSE solution was generated using
standard subspace iteration, and the MSE method to find the modes, natural
frequencies, and damping ratios of the real system. Six frequency values were used
to compute the MSE modes with the appropriate viscoelastic shear moduli. The
complex subspace iteration procedure was applied using the inverse of the shifted
MSE stiffness matrix with properties in the middle of the frequency band.

Notice that tiie a.rgiwitlgu Zulgpacs piocauure is not excessive in terms of
computer time, requiring only 125% of the MSE solution time, no matrix inversions,
and 973 real matrix/complex vector multiplications. Therefore, the improvement of the
MSE solution using the procedure defined in this paper can be used economically on
large-scale structural systems, and will provide an accurate model for damped
systems with minimal additional computational expense.

7.0 Conclusions

The above development and example problem allows several conclusions to
be made in connection with the modeling of dampead structural systems anc. active
controls. The most important of these are:

1) The MSE method provides a tool which is very effective for use in the design

of damped structures; however, it may not have sufficient accuracy for use in
the final design of modern control systems for damped structures.
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Table 2 - Solution Times for MSE Analyses and Accelerated

Subspace Iteration with MSE Starting Vectors

Number of | Number of | Total
Analysis | Number of Matrix Matrix/ Elapsed
Type Analyses | Decomps Vector Solution
Products | Time (sec)
MSE Using
Subspace 7 7 1108 2815
Iteration
Acclerated
Complex 1 0 973 3530
Subspace
iteration
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2)

3)

4)

5)

6)

7)

The MSE method can be shown to be a low-cost approximation to a
subspace/spectral iteration. Therefore, the developed procedure can be
used in concert with the MSE method to improve the solution accuracy as a
design cycle progresses.

The developed design and analysis procedure can be used efficiently in the
solution of large-scale dynamics problems with viscoelastic damping treat-
ments and active controls.

Although not shown here, the technique of subspace/spectral iteration can
be used for the solution of problems with viscous damping or combined
viscous/viscoelastic damping, and for closed-loop damped systems. The
method is as at least efficient as the techniques for solving complex eigen-
value problems currently available in many finite element codes. In fact, the
conjugate grac ant inverse power iterations are very similar to those
performed in MSC/NASTRAN [14], but convergence is accelerated using the
subspace procedure and conjugate gradients.

The solution procedure obviates the necessity tor the description of visco-
elastic materials or members using networks of springs and dashpots
(Maxwell elements), as the solution using these descriptions will inevitably
be more expensive and less accurate than using the fractional derivative
representation. These methods typically add a number of degrees of
freedom to the system matrices and increase solution costs; and the method
of solution of these eigenvalue problems in most finite element codes can be
shown to be similar to the eigenvalue procedure developed here for systems
with fractional derivative material representations. Damping element
properties can be written as a function of frequency using the fractional
derivative representation, and the solution to the equations can efficiently be
solved as developed previously. This frequency-dependent reduction can
be considered the equivalent of static condensation for systems which
contain damped elements that have negligible internal mass effects.

The cost of the eigenvalue solution procedure is independent of the descrip-
tion of the damping phenomenon in the system elements, as long as the
element impedance properties can be described as a function of the
Laplace variable. Therefore, if a higher-order fractional derivative represen-
tation is appropriate for a particular material, the solution procedure is
unaltered, and the cost is effectively unchanged.

The accelerated subspace solution method can be used for eigenvalue
problems which contain combinations of viscous dampers, viscoelastic
dampers, and even for closed-loop systems. This facilitates an accurate
modal representation of actively controlled damped systems.
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ABSTRACT

The SILFD (Step-by-step Incremental Linearization
Frequency Domain) method for the frequency domain analysis of
nonlinear structural systems with frequency dependent damping,
described in Venancio-Filho and Claret [1989] is implemented
in this work through the IFT (Implicit Fourier Transform)
algorithm, Venancio-Filho and Claret [1991]. A new and more
efficient process for the consideration of the initial
conditions in the SILFD method is presented. Numerical
examples are presented which show the applicability of the
proposed method.
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INTRODUCTION

A very efficient and accurate method for the treatment of
structural dynamics engineering problems with frequency
dependent damping is based in the frequency domain solution of

the motion equations. Physical and geommetrical
nonlinearities, when present, should be considered in these
problems. only recently methods of nonlinear dynamic

structural analysis in the frequency domain have been
adressed. Several researchers have presented contributions in
this subject. Kawamoto [1983] described a method callecd Hybrid
Frequency-Time Domain, abreviated HFTD, for nonlineer analysis
in frequency domain. Wolf and Darbre [1986] pre:sented the
segmenting approach of HFTD method and obtained its
convergence properties. Hilmer and Schmid [1988] describe a
technique similar to the segmenting approach using Laplace
Transform which computationally differs from Fourier Transform
only in the treatment of initial conditions.

All these methods present some problems related to its
applicability to real situations in structural engineering.
Two problems are adressed in this work. The first refers "o
the computational effort in nonlinear analysis in ¢ 2
frequency domain where the conventional process needs numerous
executions of direct and inverse Fourier transforms of complex
series with a great number of terms. Consequently, the memory
allocation and the computational effort is normally very high.
The second problem is the treatment of initial conditions by a
segmenting approach. Hilmer and Schmid [1988] state that Phe
treatment of non null initial conditions through Fourier
Transforms is numerically unfavorable because, in general,
step functions cause great errors in transformed functions.

The SILFD method, described by Venancio-Filho and
Claret [1989), combined with the Impiicit Fourier Transform
Algorithm for dynamic response in frequency domain,
Venancio-Filho and Claret [1991], solves efficieintly the first
problem. The second problem is treated here using the physical
significance of initial conditions and transforming the
original problem in another with null initial conditions.

THE IMPLICIT FOURIER TRANSFORM ALGORITHM

The dynamic response of a SDOF system in the frequency
domain can be expressed by the following equations, Clough and
Penzien [1982]:
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N-1

Aw 3 i2m T
vit ) = ——— H(Z%) P(w ) e (1)
2n
m=0
and
N-1
-wn—%ﬁ
P(Gm) = At y pP(t ) e . (2)
n=0

The total time interval 'rp in which the response is to be
calculated is divided into N equal time intervals given by
P

At = ——— (3)
N

and the discrete times in which the Jc~1 is defined ar= given
by

T
P
t =nAt=n — (0 = A-1), (4)
n
N
The frequency range is likewise divided ':..c N equal intervals
Aw expressed as
_ 2n
A = ——— (5)
T

p

and the discrete frequencies wm are taken according Table I
( see Appendix 1 ).

In equation (2), P(wsm) is the discrete Fourier transform
of the 1load; in equation (1), H(wsm) P(wm) is the discrete
Fourier transform of the response ( or the response in the
frequency domain ) and v(tn) is the inverse discrete Fourier
transform of the cesponse ( or the response in the time
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domain ).

The dynamic response expressed by equations (1) and (2)

can be numerically determined by the Fast Fourier Transform
algorithm,

Let now

{p} = { p(t)), p(t)), P(L),..., P(t),...,p(t, )} (6)
and

{v} = { vit)), v(t), v(t)),..., v(t ),...,v(t )} (7)

be, respectively, the vectors of the load and the response at
the discrete times

t =nAt, n

n

0,1,2,...,N-1, (8)

and let

{P} = { P(w), Plw)), P(w),..., Plw),...,Plo ) } (9)

N-1

be the vector of the discrete Fourier transform of the load

defined at the discrete frequencies wnm interpreted according
to Table I.

With the definition of equations (6} and (9),
equation (2) can be casted in matrix form as

{P} = At [E'] {p} (10)

vhere the (NxN) matrix [E'] is defined as the matrix whose
generic term Em‘is

E" = e—imna (11)

mn
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or, explicitly,

fe® e° e’ ...e° ...e
e—la éiza ...éina .”én(n-na
. e ld®  glama 2D
E = . (12)
= -imno -im(N-1) QX
e * o ®
Symmetric .
e-l(N-l)d
where o = (2n/N). By the same token, the response from
equation (2) is written in matrix form as
Aw
{v} = —— [E] [H] {p} (13)
2n

where [E] is the matrix defined in equation (11) with positive
signs in the exponentials instead of negative oncs, and [H] is
the diagonal matrix formed with the complex frequency response
functions calculated at the discrete frequencies of Table I.
The typical term of [H] is given by

H(© ) = (k - mG: + mmc)“, (0 =m=m-1) (14)

where k, m, and ¢ are the stiffness, mass, and damping of the

SDOF system, respectively. Substituting now (P} from
equation (10) into equation (13), the following equation is
obtained: .

1

(v} = — [E] [H] [E'] {p} (15)

Equation (15) expresses the matrix formulation of the dynamic
analysis of SDOF systems in the frequency domain. The
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calculation of the structural response in the frequency domain
through this equation is the IFT algorithm,

THE SILFD METHOD

Consider the SDOF system of Fig. 1 submitted to an
arbitrary excitation p(t). The spring stiffness k depends on
the displacements v due to the system non-linearity and the
damping coefficient depends on the frequency of the
excitation, w. The problem is then to integrate the dynamic
equilibrium equation

mV+ c(w)v + k(v)v = p(t). (1e)

As the damping coefficient is w dependent a
frequency-domain analysis has to be performed and, as phe
stiffness depends on the displacement, a linear1zat19n
technique must be employed., Consequently the present method is
a Step-by-step Incremental Linearization in the Frequency
Domain (SILFD) method. In each linearized step a secant
stiffness is considered.

In order to calculate the response of the system gqyerned
by Eq. 1 two approximations are made. The first one is the
approximation of the given load by piecewise linear.segments.
The total time interval in which the response is to be
calculated is divided in intervals Aty =t; - tj-1; pj and
PJ-1 are the values of p(t) in the times t; and  tj-1,
respectively, and Apj = p;j - pj-1, Fig. 2a. The load variation
in time interval At; is given by, Fig. 2a,

Ap
p(t) = p + Jt (17)
I At
3
where t is the current time in At) (0 = t =At;). The second

approximation refers to the spring force versus d;splacgment
curve. This curve is also approximated by piecewise linear
segments as indicated in Fig. 2c. The levels of these two
approximations depend on the accuracy with which the load and
the stiffness variation can have a good representation.

The response of the system is calculated through the
linearized steps along the time intervals At) in which the
spring is considered linear with stiffness kj, Fig. 2b. the
linearized dynamic equilibrium equation in time interval At
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is
mv+ c(w)v + kdv = p(T) (18)

with the initial conditions vji-1 and vj-1, Fig. 2a. Herein the
treatment of the initial conditions departs from
Venancio~Filho and Claret [1989] in order to circumvent the
errors in the transformed functions to the step functions.

The displacement response in time interval At; due to the
applied load obtained through the IFT algorithm is

AW

2n

v} = [E] [H] [E'] {p}, (19)

where {ps}. is the load vector in the time interval At;.

The displacement response due to the initial displa;ement
is equivalent to the response due to a constant force, in the
time interval At;, given by

{pj}I = -kyv _ {1} (20)

where {1} is a vector with all elements equal to 1.
Consequently the response is obtained from Eq. 19 as

vy =22 ey ) Ky
J-1 2n

{1}. (21)

The displacement response due to the initial velogity
j-1 is the response to an impulse m j-1: which is obtained
from the unit impulse response function as

v =mv h(t). (22)
J J-1

h(t) is the inverse Fourier Transform of the complex frequency
response function H(w) and is given by
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h(t) = — ron(a) e'“tdp. (23)
2n

-0

Considering Eqs. 23, 22, and 15, the response due to j-i is
obtained as

mv AW
{v}) =—1_ [E] [H] {1}. (24)
vy 2n

The total response in time interval At; is the given gy the
sum of the responses in Egs. 19, 21, and 24. The result is

Aw

v} = (E1H1[(E") (o), — kv, ) - mi,_ {1}]. (25)

2n

EXAMPLES

A SDOF system formed by a mass m = 1 kg and by a bilinear
spring with constants Ki = 10000 N/mm and Kz = 10 N/mm was
analysed by Kawamoto [1983] considering undamped vibrations.
The same system is now analysed considering the follow?nq
cases: iI)- undamped system; II)- frequency-dependent damping
acording to the function c(w) shown in Fig. 3; TIII)-
frequency-dependent damping acording to the function c(w)
shown in Fig. 4. The load function is

p(t) = 50 sin(1.5t) + 100 sin 0.005t (26)

which is pictured in Fig. 5. The natural period of vibration
is T = 0.063 sec. Kawamoto [1983] considered At =1 sec to
perform the analysis of system’s response through the HFTD
method, and At = 0.02 sec using direct integration of
equilibrium equations,

In case I, using the SILFD method with the IFT, a tiye
interval At = 25 sec is used, and the system’s response 1S
shown in Fig. 6. Comparing this response with Kavamoto’s one
( Kawamoto [1983], Figure 6.94, page 341 ), it is evident that
the proposed method is efficient in predicting the maximum and
minimum response of the system. Furthermore, the proposed
method is better than HFTD in describing the '"true' response
of the system, particularly if we consider the accentuated
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sSpring softening.

The responses of Cases II and III, Figs. 7 and 8,
respectively, show that frequency-dependent damping is treated
conveniently by the proposed method. Others types of .c(w)
functions can be considered with no changes in the algorithm,
A very small diferences in the moduli of maxima displacemen?s
are observed from Case I to Cases II and III. One reason is
predominant for this fact: the steady-state response is
calculated and the static amplitude p(t)/Kz, for such a small
value of K2, is predominant in the system’s response.

CONCLUSIONS

The proposed method is efficient for treatment of dynamic
nonlinear systems with frequency-dependent damping. In a
future work, the computational effort needed will be measurgd
and compared with the cpu time of others methods. Howqwer, it
is very apparent that the SILFD method combined w1§h tpe
IFTalgorithm is well suited for nonlinear analysis in
frequency domain, optmizing computational effort and memory
allocation.
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APPENDIX

The discrete frequencies employed in this formulation
must be interpreted according Table I. Taking_into account the
frequencies w from Table I, H(wm) and H(w, ), Eq. 14, are

complex conjugate,

Table I. Discrete frequencies (N odd)

m m or (N-m) W

0 0 (]

1 1 Aw

2 2 2Aw
(N/2-1) (N/2-1) (N/2-1)Aw
N/2 N/2 (N/2)Aw
(N/2+1) (N/2+1) [-(N/2+1) ]Aw
N-2 2 -2A0
N-1 1 -Aw
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Fig. 1- SDOF system.
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ON A LINEAR PROPERTY OF LIGHTLY DAMPED SYSTEMS
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ABSTRACT

As one of the direct applications of complex damping theory, a useful
property of structural damping is presented in this paper. If a structure

is linear and lightly damped, (i.e. the maximum damping ratio < 0.3), then
increased damping of the structure will result in proportional change in
each modal dampling ratio of the system. This property ‘s particularly useful

in damping re-design and damping measurement. A number of experimental

and numerical examples are also presented.




INTRODUCTION

Quantities such as Vv 1—52 and exp(-£w) , where £ is the damping ratio and
w is the undamped natural frequency, are often seen in the studies of
dynamic systems. Direct treatments of these quantities are difficult.
Furthermore, they are too complicated to be used in practice. Most
engineering applications typically use approximated values for these
quantities. In Table 1 some possible approximations of € and Vv 1—&2

together with the assoclated errors are given.

Table 1 Damping ratios and the approximations

approximation of § approximation of Vv 1-&2

£ sh(€) & error v 1-&2 1 & error 1—52/2 & error
.001| 1.0000005 O0.% 0.9999985 1 Se- 5% {.89989395 0.0%
.01| .0100001 1.6e-5%| 0.99985 1 Se- 3% |.999995 0.0%

.05| .0500208 .042% 0.9987492 1 0.125% |.99875 -B8e-5%

.1 . 1001667 . 167% 0.9849874 1 0.501% |.995 .00126%

.2 .201336 .668% 0.9737958 1 2.020% ;.98 . 0204%

.25 .2526123 1.04% 0.968458 1 3.175% |.86875 .0504%

.3 . 3045202 1.51% 0.9538392 1 6.080% |.855 . 106%

In this Table, the largest error appears when Vv 1-52 is approximated by
unity. If the value of § 1s less than 10% , then the error is no more than

0.5% . If the value of £ is less than 30%, then this error is less than 5%.

If we approximate 1 - 52/2 by unity, then the error is no more than

0. 106%. These errors are tclerable in most engineering applicaticns.

We define a structural system to be lightly damped if the absolute value

of the damping ratio for the system i{s less than 30% . The damping of most
civil enginewvring structures such as buildings, bridges, dams and towers is
usually less than 10%. Metcl structures have even less damping. Theoretically

speaking, for lightly damped systems, we have the following equatlions

Vgt .o
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J1-€2 ~1-¢¥2
exp(£) ~ 1 + £ + £/ 2 (1)
ch(§) =
sh{€) ~ €
This paper is limited to the discussion to such systems.

COMPLEX DAMPING OF LIGHTLY DAMPED STRUCTURES
We first describe the complex damping ratios of lightly damped systems.

Consider an MDOF system. For each virtual mode of the system, we can have

an equation
G+ (a+ Jb) b+ olu=0 (2)
The characteristic equation of (2) is given by

A2+ (a+ jb) A+ w: =0

with
A = -%—-[—(a+jb) t ((a+jb)3- 4af))1’2]
= - (asgb ) £ (( a;gb )2 -1 )1/2]
n n
=3e [ 0BR gy e 1e (22 (3)
n n

Using (1) for lightly damped systems, we have
a+jb

%)
n

172

« 1 (4)

and
a+Jb a+Jb

(1+ J %) 1+ 5 (55— )? (5)

Without loss of generality, let us first take the positive sign of

a+ jb 2
5 )7 )

n

172

(1 +(
in Equation (3). Then we have
2
_ a+jb 1 a+jJb
-J"’n[( J)*“'z—(—évn-”] (6)

By using (1), we have




+ ib +ib -
(2 )~~1+—("‘J DE~ exp(D
ﬂ n
_ a -b
= exp( =5 ) exp(—50)
n n
o a 1 a .2 -b
L1 Jm - 5l exp(500)
n n n
=~ [ J a 21/Z]exp(-—_'-t—)—)
2w 2w
n n
It follows that
_ a 2,172 -b
A= an[ =5 ] xp( 2w )
n n
= - _ 2,172 -b
=5 exp( 55 )w + 3(1 ( J 17) " Texp( 2m)wn
n n
Now take the negative sign
- atJb, 2 (1/2
C1e 052905
in Equation (3), we have
_ _ _a 172, b
A= 2w =5 ¥P(— )w xp( an)w"
Combining Equations (7) and {8), we have

- _ a ¥b
A= anexp( 2

n

* JC 1 - (

a 2,172 b
2w J )7 Texp( 2w )wn

n n

By comparing the Equation (9) with the standard form of A,

jv 1- 2 w

= - fw =
we have
a
55 = 13 (a=2¢€ w )
and
¥
exp( 5 ) =W
n
By using (1)
exp( +b ~1*+ (1% (———P—-)z)l/2
2wn
Then
P ¢ (b=2¢Cw )
2w n

In Equations (10) and (11},

mode of the system.

have, for the 1Lh

a and b are associated with the 1"

virtual mode of the system,
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By assigning to a and b some proper subscripts, we




al= 2 €i“"nl
(12)
bl= 2 cIwni
and
2
= - by + 3 - e
Al ﬁlexp(+cl) LI 1-€ exp(+§l) w ., (13a)
Sometimes, it is convenient to approximate Al by
Al =] wnexp( £+ 3C) (13b)

If we define the ith complex damping ratio of a lightly damped system by

d
—-— 1 —
01 = an, = €l ) Cl (14)

then we can make the following statements.

Theorem 1. For lightly damped MDOF system, The complex damping

coefficient of the ith virtual mode is
d1 =2 ( E‘* J Cl) w

where the real part of the complex damping ratio, El, is the traditionally
defined "damping ratio", €‘ , l.e.
real (d.I )
g = = 2

i 2w
ni

the imaginary part of the complex damping ratio, cl. is associated with

the change of undamped natural frequency w, from the zero-damping
frequency w , 1l.e.
nt w = exp(f) w
1 1 ni’
Theorem 1 indicates that, for a lightly damped system, we can treat the
real and imaginary parts of the complex damping ratio (or complex damping
coefficient) separately. The Theorem is useful 1in energy analysis of real

damping and imaginary damping.

THE LINEAR PROPERTY OF LIGHTLY DAMPED SYSTEMS

For lightly damped systems, the damped natural frequencies are
approximately equal to the undamped natural frequencies. That is, if the
value cl is sufficiently small, then

exp( C‘) = 1

and w = expl€) w =w . (15)
1 i nl ni
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Equation (15) says that, if two lightly damped systems, H1 and H2 , have

the same mass and stiffness distribution, then

(m (2

Alm * AL (18)
and

(v (2 a

M Mg i=1,...2n (17)

To simplify the notations, we arrange the system eigenvalues in the

following order

1 2 e n

For proportional systems, we now have the following lemma.

Lemma 1. If a lightly damped system H has proportional damping CC which
can be represented as the sum of two proportional damping C1c and C2C R
i.e.

C= C +¢C

c 1c 2C

then, for the subsystem ch and Hzc , we have

A = A0, 0
Re Re Re
l.e. (10) (20)
Aine = Aine + Axne i =1,...2n (18)
and
A = A0 a0
Im Im Im
i.e. (n (2)
Ailn ™) Ailm ~ Allm , i=1,...2n (19)

Lemma 1 says that, for a system with proportional damping, if it can

be split into two subsystems both with proportional damping, then the
imaginary part of the eigenvalues of the original system is the sum of the
corresponding imagirary parts of the two subsystems. In other word, the
damping ratios possess the following relationship

(1C) (2C)
+

:D =€ £ P=1,..... 2n (20)

3

where the superscript (.) stands for the corresponding system (.].

Lemma 1 can be used in damping identification. When dampers are added to

a structure, the damping ratio of the structure is changed. By using \
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equations (18) and (18), we can determine the damping ratio of the

modified structure. In a later section, some examples will be given.

Lemma 1 can be extended to systems with general non-proportional damping.

This is described in the following Lemma.

Lemma 2: For any lightly damped system with damping C, let H be the state

matrix. If we separate the system into two subsystems HP and Hﬁ , then
we have

A ~ A(P)

Re Re
i.e A, =P 1=1, 2 2n (21)
T iRe iRe ’ v
and A ~ A(P) ~ A(N)

Im Im Im
(P) _ (N _

i.e. Alxm = Aixn = Aixm , 1=1 2, ... 2n (22)

This lemma is easily understood by noting that systems H and HP have
the 1dentical damping ratlos for their modes, and almost the same natural

frequencies per each mode.

Theorem 2. If the damplng matrix C of a lightly damped system H
can be represented by the sum of two matrices Cland C2, {.e. C= C1+ C2
then, for subsystems H1 and Hé , we have

A e A(l) + A(Z)

Re Re Re
(1) (2) _
i.e. AiRe x 1 Re + (1§R° (;) i=1, 2, ..., 2n. (23)
and A = A % A
Im Im Im
(1 _ (2 -
i.e. Aixm e 11 ~ Mim ® i 1, 2, ... 2n (24)
PROOF .
let C =C_+C and C_ = C + C_ . Then we have
1 1P 1N 2 2P 2N

c=C + C =(C + C )+ (C + C_))
1 2 1P 2P 1N 2N

According to Lemma 2,

(1P + 2P) (1P) (2P)
A = A = A + A
Re Re Re Re
(1) (2)
x A A
Re Re
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The second half of the theorem is obvious.

Corollary 1. 1If lightly damped systems H1 and H2 have same mass and
stiffness distribution and damping matrix C2 of Ha is B times of C1 of H1'
{(i.e. C2= B Cl), then, for H1 and Hé , We have

A(1) ~ A(2)
i.e. Ao @ t=1, 2, ..., 2n. (25)
iIm i1Im
(2> _ (1)
and ARo B ARe
(2> (1 -
i.e. A B A {=1,2, ..., 2n. (26)

APPLICATIONS AND EXAMPLES

Example [
Figure 1 shows a structure with 3 DOF. Before dampers are added, the system

has the following damping ratios
Table 2 Damping Ratios of the Base Structure

Mode I II III

damping ratio| .0102 .0087 .0079

By adding dampers to the base structure, the damping ratios are changed.
Since the damping ratio of a damper 1is directly related to the physical
parameters (such as the loss modulus and the volume of damping material),
the ratio can be calculated when these parameters are given. Suppose we
have already obtalined the corresponding damping ratlios contributed by

the dampers (first row of Table 3). Now we would like to have the damping
ratios of the structure after the dampers are lncorporated. It is easy to
see that the system is still lightly damped. So from Theorem 2 we can
calculate the damping ratios using the llnear property. The results are
shown in the third row of Table 3. The last row in Table 3 gives of the

experimental data to be directly compared with the calculated results.
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Table 3 Calculation of damping ratio

mode I II II1

€, a4 275 .1010 | .o0744

€ ane .0102 0087 | .o0079
°a1czlated . 2852 1097 | .07519
tezted . 2970 .0877 | .08200

Example 11

The second example is concerned with the damping matrix decompositions.
Thus far, there are three popular damping matrix decompositions. (1). The
Clough-Penzien decomposition

cC = CP + CN

This decomposition gives a proportional damping matrix CP. Consequently
all the damping ratios of the system can be calculated.

(2). The pure proportional and non-proportional decompositicn

C = C + C
d [}

This decomposition gives the pure non-proportional damping matrix Co.

(3). The real-imaginary decomposition:
C = C+ C
r 1
This decomposition gives the matrix Cr and the matrix Cl which
provide the real part and the imaginary part of the complex damping ratio

respectively.

Although decomposition (3) is in great use when dealing with energy
analyslis, its compu.ations are intensive. With the help of Theorem 2
we can use the formula

c = ¢ + C |,

d n
to approximate C = C + C‘. This is a simple approach to obtain C

r




matrix.

Suppose we have the following M-C-K system,

2 -1 -1 0 180 -48 0 O
) -tz -1 - _| -8 138 -88 o
MW=L C€=1_4 4 a2 2| 24 K=1 5 g3 130 -92
0 -1 -2 5 0o 0 -92 92

408 -144 -92 92
-324 544 -352 0
-132 -440 992 -582

48 40 -732 644

we know that the system is non-proportionally damped. Using the pure

CK

proportional decompositlion, we have

[ 3.8507 ~-.2994 .0301  -.3307 ]

c = -.2944 3.6314 -1.1827 -.5486

d .0301 -1.1827 3.6328 -1.3303

and | -.3307 -.5486 -1.3303 2.8851
[ -1.8507 -.7006 -1.0301 .3307 ]

c = -.7006 -.6314 .1827 -.4514

o -1.0301 . 1827 .3672 -.6697

| .3307 -.4514 -.6697 2.1149

The eigenvalues of the system are given by
-2.5182 * 16.5207)
-1.8893 * 13.6837]
-1.8617 * 9.8809]
-0.6307 * 3.0123}]
their corresponding complex damping ratios are
.1507 * .0098})

.1367 ¢ .0066J
.1947 + .0063
.2050 + .01004

The maximum damping ratio is about 21%. According to Corollary 1, {f the
damping matrix is reduced to one tenth of the original value, then the
damping ratios will be approximately decreased to ten times smaller.

Therefore the maximum damping ratio is about 2A4.

In Table 4 we listed the results of A(Hco) and 6(Hco) from Cd- Co

decomposition as well as the results from the system of C/10 damping.
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Table 4 A(H ) and ¢(H )
co co

Original system System with C/10

‘ .0179 + 16.7148] .0000 * 16.8771

g A | —-0323 + 13.8242) .0000 + 13.9147}

2 .0148 * 10.0737] .0000 * 10.0098 j

é -.0004 + 3.0769j .0000 + 3.0468]
g g 1 x le-4 x

B P . 1507 % .0098] -.0100 + .9811j

é é . 1367 * .0066] .0216 * .B170j

§ .1947 * .0063}J -.0136 t .6156]

Go .2050 + .0100j .0012 ¢+ .9824}

The numerical results in Table 4 show that the approximation is

satisfactory. This is particularly obvious for the small damping ratios.

CONCLUDING REMARKS

Most englneering structures can be classified as lightly damped systems.
Dynamic analyses of these structures could be different from and simpler
than those of heavily damped systems. The nice linear property of the
lightly damped systems presented in this paper is such an example. A

further application of this property can be found in damper utilization
design (see Liang et al 1991).
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Active Vibration Suppression via LQG/LTR;
Analytic and Experimental Results for the
PACOSS Dynamic Test Article

Russeli N. Gehling *
Martin Marietta Astronautics Group

ABSTRACT

Future large space systems (LSS) will possess high modal density at low
frequencies, and mission performance requirements will necessitate control
bandwidths encompassing these modal frequencies. This situation has potential for
adverse controls/structure interaction (CSI) detrimental to system performance.

The Passive and Active Control of Space Structures (PACOSS) program has
investigated the design, analysis, and verification of passive and active damping
strategies applied to LSS. This paper discusses the results of an experiment in which
a Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design
technique was applied to the PACOSS Dynamic Test Article (DTA) for the purpose of
high authority vibration suppression.

In general, the LQG/LTR control demonstrated high sensitivity to design model
accuracy. Actual performance was significantly less than predicted, even though the
control design utilized an accurate test-verified model.

The results of this experiment indicate that analytic LSS models which are quite
accurate by structural dynamics standards may be insufficient for use as design
models in modern control algorithms. However, passive damping designed into LSS
flexible modes will simplify the active control design and implementation in terms of
sensor/actuator requirements, design model order, real time computing requirements,
and overall system robustness.

$ P.O. Box 179, Denver, CO. 80201, Mail Stop H4330, phone: (303) 971-9388.
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INTRODUCTION

Future large space systems (LSS) will possess high modal density at low
frequencies. Some missions envisioned for these systems require rapid retargeting
and precision pointing which lead to control bandwidths overlapping many closely
spaced structural modes. Therefore, some means of structural vibration control will be
necessary to avoid excessive excitation of the flexible modes. Passive/active vibration
control is the most realistic and efficient approach for vibration suppression in such
dynamically challenging systems

The Passive and Active Control of Space Structures (PACOSS) program
investigated the design and implementation of passive and active vibration
suppression on structures typical of many LSS configurations. This involved desigr
and fabrication of the passively damped dynamic test article (DTA) possessing high
modal density between 1 and 10 Hz (Fig 1). Also, an active vibration controi system,
was designed and impiemented. A brief description of the DTA hardware and test
setup is presented in this paper, while a detailed description of the DTA is given in
Reference 1.

Previous investigations with the DTA demonstrated good agreement between
measured and predicted performance of the passive damping design acting in concert
with local direct velocity feedback (LDVFB) as discussed in Reference 2. However, the
LDVFB was a relatively low authority active damping approach which did not
dramatically improve the DTA line of sight (LOS) performance. Optimal control in the
form of a Linear Quadratic Regulator (LQR) approach allows for efficient use of
actuator capability in the design of high authority vibration control. The loop transfer
recovery (LTR) technique allows for estimator design which recovers the desirable
characteristics of the LQR full state feedback design. These characteristics make the
LQG/LTR design algonthm attractive for designing a multi-input multi-output vibration
controller for the DTA.

This paper discusses the application of the LQG/LTR controi design algcrithm to
the DTA LOS vibration suppression problem. Analytic and measured results «. »
presented to show the degree of agreement between analytic predictions anc actu=|
performance. Conciusions regarding the practical application cf LQG coatrol 1or
vibration suppression and the role of passive damping are drawn f-om the test rssu.s
and analytic studies.

HARDWARE DESCRIPTION AND MODELING

The PACOSS DTA s a laboratory testbed for passive and active structurai
vibration control implementation and testing. The DTA possesses 23 major structurel
modes between 1 and 10 Hz, many of which are global in nature. Using the methort
described in Reference 3, passive damping levels between 5% anu 10% (moda!
viscous) were designed into the flexible modes which contribute to LOS error. The
analytic model was then verified through a comprehensive modal survey {Reference
4). The DTA is suspended from three pneumatic suspension devices which have verv
low stiffness and virtually no fricticn. The suspension arrangemant gives the DTA six
rigid body modes below §.3 Hz. The overall {est setup is shown in Figura 2.




PACOSS Dynamic Test Article

Figure 1




Figure 2 DTA Test Setup




The active control system includes reaction mass actuators (RMA), inertial
velocity measurements, and a digital control processor. Ten RMAs with collocated
Sundstrand QA-1400 accelerometers and linear velecity transducers are mounted at
the locations shown in Figure 3. Also identified in Figure 3 are the locations of three
additional non-collocated QA-1400 accelerometers. Inertial velocity is obtained from
the 13 accelerometers by integrating the signals with bi-quad filters as discussed in
Reference 5. Thus, the control system involves 23 inputs (10 collocated inertial
velocities, 10 collocated relative velocities between the reaction masses and DTA, and
3 non-collocated inertial velocities),and 10 outputs. Contrc! laws are implemented via
an Optima/3 digital controller capable of hiandling up to 32 inputs and 32 outputs. In
the PACOSS experiment, the processor ran the LQG/LTR control law (36 states, 23
inputs and 10 outputs) at a 400-Hz sample rate.

Due to their 1.5-Hz natural frequency, the RMAs cannot contro! the Inw
frequency rigid body dynamics of the DTA. Therefors, a relative LOS was defined to
exclude rigid body modes from the contro! system. Thus, the controller acts strictly as
a vibration suppression system. Figure 3 identifies four disturbance input points on the
DTA. These disturbances cou!’ be from maneuvering thrusters or onboard
equipment. The relative LOS response to these disturbance inputs was taken as the
performance metric to be minimized by the controller

Cisturuance input
Point 2 (722)

Disturbance input

Pom 3 (762) \

Disturbance input
/ Point 1 (682)

Solar Array 2 Solar Array 1

Ring Truss

Disturbance Input Points
Sensor / Actuator Pairs
Non-Collocated Sensors
Actuator Un:t &'s

Qo e X

Oisturbance Input ‘ "
Point 4 (802) » Equipment Plaiform

Figure 3. DTA Controi Locations

' aadition to the active control instrumentation. 182 Kistler model 8632
accelerurneters were installed on the DTA for acquiring medal survey data. The large
number of cables seen in Figure 2 are primarily from these modal accelerometers.




Tests with and without the majority of cables attached showed that the instrumentation
cabies had no effect on tha flexible modes ot the DTA. The LOS measurement was
synthesized as a linear combination of selected measurements from the Kistler
accelerometers.

A detailed finite element model of the DTA with over 10,000 degrees of freedom
{DOF; was devsloped and test verified during the first phase of the PACOSS program.
The detailed mode! was reduced {via 2 Guyan reduction) to 357 DOFs, and the modes
determinad from this reduced model. Table 1 compares the analytic and measured
natura! frequencies and damping ratios and lists the diagonal term of the orthogonality
product batween the predicted and identified 1.c2ac up to 10 Hz. The modes retained
in tha control design modet (CDM) ware those possessing significant observability or

controllability when the control points, sensor points, disturbance input points, and
1 D8 weie cunsideiou. ©sseuaaily, 1he COM incluaes all giobal moades and a tew
apperdage modss with frequencies below 10 Hz.

Tevde i Ildgntifled and Predicted Modes from DTA Modal Survey 3

M § Retained in
 iiode # | Measured ; Analytic X-orth | control design
| 1 diag. model
Poh ey | R T e
Tyt 103 2.9 1.04 4.8 0.97
L2 o491 | 34 1.08 4.9 0.98
;o2 | zss 4.9 2.68 2.8 0.98 X
o4 b 303 7.4 317 5.9 0.51
L5 1 313 8.5 3.22 5.0 0.40
Lo ;o 3.30 5.1 3.37 5.3 0.71 X
S foa45 8.7 3.54 7.4 0.74 X
C ©o373 1 53 3.75 4.9 0.98 X
Pk A 3.85 10.1 0.98
Loy I 456 : BB 4.43 6.1 0.84 X
: I e R S B4 4.46 3.4 £.8¢
Poe Cooanz 1B 4.45 3.0 0.89
P L 508 1 920 4.86 11.9 0.97 X
AR 513 ! 54 5.02 7.1 1.00
corn L3578 1 18 1 585 2.6 0.94 X
582 . ¢+ 585 2.5 0.98 X
LT S4B 800 3.3 0.96
P18 7 85 i 95 1 625 9.7 0.98 X
P oL A7 ! 1z /.26 6.0 0.67 X
| 20 g 120 7 Ty 2.35 7.2 0.99 X
Lo S TR B 3.55 7.1 0.93 X

i S 11 1.4 0.96
. vh AN 1.4 0.94

mete Anaivtic damping catae for maedes 1 through 18 computed using VEM properties
4t 4 Hz modes 19 through 2.3 computed using VEM properties at 9 Hz.




The conelation of the analytic and measured results was excellent in terms of
frequency and damping ratios. The orthogonality diagonal term indicates agreement
in terms of mode shape and should be greater than 0.9. As lisied in Tabie 1, the mode
shape correlation is quite good for most of the fiexible modes retainad in the COM with
the exception of modes 6, 7, 10, and 19. Modes 6 and 7 are antisymmetric globai
modes which involve the box truss, tripod, and solar arrays. Modes 10 and 19 are
more local in nature, mainly invclving the antenna.

Review of component modal surveys (Ref 6) indicated that the fundamental
constrained interface mode of the box truss was abcut 6% higher in natural frequency
than predicted. In an effort to evaluate the effeci on the DTA system modes of
matching the box truss constrained intertace fundamantai frequency, the 1/8-in.
diameter x 0.014-in. wall box truss members were stiftened by 20%. This increased
the box truss constrained interface fundamental frequency by the desired 6% to match
the component test results. In this case, the fundemental mode shape of the box
remained essentially unchanged. The DTA model was recoupled with the stiffened
box model, and the system modes computed.

Table 2 lists the results for the updated model CDM modes. Note the negiigible
differences in natural frequencies and damping ratios between the two analytic
models for all but modes 6 and 7 (see Tabi~ 1). These modes shew a small shift in
frequency bui a .elatively large change in damping ratio. Agreement with the
measured values, while remaining quite good, improves somewhat for mode 7 but
degrades slightly for mode 6. Tha vrthogonality product diagonals ior modes 6 and 7
between the measured and updated analytic modes are greatly improved as
cocmpared with the original DTA model. These results indicate that accurate prediction
of closely spaced modes can be quite difficuit. Here, a 6% change in a substructure
modal frequency produced a major change in two very closely spaced system mode
shapes. The task of predicting and identifying closely spaced modes in dynamicaliy
complex structures indced requires extremely accurate finite element models.

Table 2 Measured and Analytic fnp and { for DTA Modes Retalned In CDM

“Aode # Measured Updated X-oith
tn (H2) C (%) fq (Hz) C (%) diagonal

3 2.59 3.9 2.66 2.8 0.95

6 3.30 5.1 3.47 4.2 0.93

7 3.45 8.7 3.51 8.6 0.95
{8 3.73 6.3 3.70 48 0.98
10 4.56 5.8 4.43 5.0 0.82
13 5.08 12.0 4 86 121 0.97
15 5.78 1.6 5856 2.6 0.94
16 5.82 2.1 ‘ 5385 2.5 008
18 6.55 9.5 6.41 9.9 0.99
19 887 7.2 727 6.0 0.67
20 9.20 7.0 2.41 } 7 0.99
21 9.61 6.4 9.8 ! 7.2 0.93




Thase observations indicate that DTA modes in the 3 to 4-Hz range are very
sensitive to the relative stiffnesses of the box truss, tripod, and solar arrays. Stiffening
the box truss seems to have improved correlation, but altering the tripod or solar array
modelc may have similar effects. The DTA model with the stiffened box truss was used
as the evaluation model for control performance evaluation. However, the original
DTA modsi was used to design the LQG/LTR control since it was the best available
moaei pefore conducting the final open loop modal survey in the 10 actuator DTA
configuration.

LQCG/LTR DESIGN APPROACH

Modern state-space contrcl design techniques allow the analyst to
corveniently model and analyze high-order, multi-input, multi-output (MIMO) sysiems.
One wranch of modern control theory well suited to the DTA vibration suppression
problem is optimal LQG control. The LQG approach provides a fram=vsork in which
LOS jitter supprassion may be traded against active control effort to deterinine *he
mast efficient compensator design for the required performance. The complete
LQG/LTR design algcrithm utilizes standard LQG design techniques (optimal regulator
or astimator design, depending on the problem), and then computes the companion
gstimator or regulator design such that the singular values of the system loop-transfer
matrix approach those of the full-state design case. This is known as "recovery” of
‘oop-transfer functions (LTF).

The LQG control structure is shown in Figure 4. It consists of a Kalman-Bucy
filter (KBF) with gains, K¢, designed to estimate the states of a nominal plant model,

G{s}. ard a full-state, l.near-quadratic regulator, Ke. Figure 4 and the nomenclature
used nere were taken frcm Reference 7. Referring to Figure 4, the following propenties
for ihe LQG control structure may be stated:

1) The LTF obtained by breaking the LGG loop at point (i)' is the KBF LTF
CoKy.

2) The LTF obtained by breaking the LQG loop at point (i) is GK. It can be
made to approach C®K¢ pointwise in s by designing the LQR in

accordance with a "sensitivity recovery" procedure due to Kwakernaak
(Ref 8). This assumes G(s) is minimum phase and thatm > r.

3) The LTF obtaired by treaking the LQG loop at point (ii)' is the LQR LTF
K~®B.

4) The LTF obtained by breaking the LQG loop at point (ii) is KG. It can be
made to approach Ko®B pointwise in s by designing the KBF in
accordance with a "robustness recovery” procedure due to Doyle and
Steir (Ref 9). This assumes G(s) is minimum phase and that m < r.
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Plant Model:
x = Ax+Bu+& xe R ueR
y=Cx+m; ye R'

satisfies:
G(s) = Cd(s)B
with:
-1
Po(s) = (S I,- A)
where:
n = number of plant states
m = number of plant inputs
r = number of plant outputs
¢ = plant noise (white, zero mean, random process)
n = measurement noise (white, zero mean, random process)

Figure 4. LQG Control Structure

As stated in Reference 7, "The signiticance of these four facts is that we can
design LQG loop-transfer functions on a full-state feedback basis and then
approximate them adequately with a recovery procedure.”

The appropriate approach for the DTA is to design K¢ via the LQR technique
and then compute K¢ to cause the singular values of the loop-transfer matrix, KG, to

approach those of the full-state feedback case, K¢c®B. The procedure for computing
the KBF gains is described in Reference 7 and summarized below:

1) Append dummy columns to B and zero rows to K¢ to make C®B and
Kc®B square (r x r). COB must remain minimum pnase.

RVICE




2) Design the KBF with modified noise intensity matrices:
E(55T) = (Mo + q2BBT3(t - 1)
E(nnT) = Nod(t - 1)
where Mg, Ng are the nominal noise intensity matrices and q is a scalar
parameter.

Under these conditions (Ret 9):
(1/q)Kf - BWNo'12 as @ — oo
where W is an orthonormal matrix.

This calculation of Kf resuits in
K(s) G(S) — Ke®dB as q — oo

The design procedure for a MiMO system involves calculation of K¢ with
successively increacing vaues ot the fictitious plant noise, q. As q approaches infinity,
the cinguiar values of KG will approach those of KewB. However, the gains in Kf will
become yuite iarge, wiicih is generaliy undesirable. Thus, a designer will wish to use
the smailest g for which the LTF of KG acceptably matches that of Ko ®B in the
bandwidth of interest.

An extensicon of the single-input, single-output Bode plot for MIMO systems is
tha singular value (SV) Bode plot. Comparison of SV Bode plots for KG and K¢c®B is
a2 gond indicator of the loop-transtfer recovery achieved for a given value of q.
Therefore, SV Bode plots may be used to determine the convergence of KG to K¢cdB
over the Dandwidin of interest.

The decign goal of the LQG/LTR control algorithm for the DTA was to
minimize tha LOS response to slew commands and noise disturbances at knownr input
points. The approach taken for application to the DTA was to design an optimal
raguiator based on full-state feedback and then recover the loop-transfer functions at
the disturbance and slew command input points. Thus, as discussed in Reference 10,
the desiratia characteristics of the LAR full-state feedback design are recovered by
the eatimator.

Calcuiation of the LQR gain matrix involves selection of state and control
weignting matricas, Q and K. These required matrices were determined as follows:

L0g =03 Y. philosx O]{T‘>=[TLos]x

(LOS-Y] Iphilosy 0O n
whara
nhiicsx = mode shape coefficients defining LOS about X-axis
philosy = mode shape coefficients defining LOS about Y-axis
N = generalized modal coordinates
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Minimize:
LosT[A]LOS + u [Rul=x"|TLOST|[@]TLOS]x + u [Rlu

Let:
R=1TI (10 x 10)

a-|TLos’|[TLos)@

The magnitude of the scalar Q is then varied to achieve the desired
performance. Once the desired LOS response is achieved, representative
disturbances and maneuvers are input to the fuli-siate feedback closed-locp
simulation to check if actuator stroke or force constraints are exceeded. If such limits
are violated, the magnitude of Q must be reduced, and K¢ recomputed.

After an acceptable LQR design is obtained, the KBF gain matrix is
computed using the LTR method previously described. The input matrix, B, used in
the loop-transfer recovery procedure includes the control and disturbance input points.
Note that the number of points used (number of columns in B) must be less than or
equal to the number of sensci measurements (number of rows ir C). After each

computation with a given value of q, the SV Bode plots of KG and Ko®B are

compared. Once convergence (in a qualitative sense) is apparent, the control design
iIs cemplete.

Following several iterations, good performance was achieved with a state-
weighting parameter, 0, of 10¥. The LTR procedure was then performed for varying q.
This process was conducted using the matrix algebra software package, PRO-
MATLAB, and the Robust Control Toolbox function "ltru" (Ref 11). Figure 5 shows the
convergence of the SV Bode plot for three values of q. The plots show nearly perfect
agreement for qQ = 10%. Using this value, the iargest gain in the KBF matrix was 9600,
which is iarye but proved to be acceptable.

The closed-loop frequencies and damping ratios for the initial LQG/LTR
design coupled to the DTA CDM are listed in Table 3. Note that the LTR procedure
resulted in ~everal overdamped \rea!} polec far in tha left half nlana g5 well as several
very low frequency real poies.

It was necessary to remove the high-frequency poles from the design to
avoid aliasing problems when running the controller at 400 to 500 Hz. Also, since the
0.05-Hz hi-quad integrator poles were not included in *he CDM, the low-fraquency
compens.tar poles could couple with the analog integrators used for the inertial
velocity measurements and cause stability problems. Theretore, the compensator
poles less than 0.5 Hz also had to be removed from the controller design.

in attempting to reduce the controller order, it was found that the low-
frequency pcles could not be removec from the compensalor without causing
instabilities when coupled with the DTA structural model. Therefore, the LQG/LTR
design was repeated, but with a spectral shift appt2d to *he Kalman filter design such




thar the filter poles were required to be greater than 0.5 Hz. This procedure resuited in
a comgpensator which ingeed possessed no poles below 0.5 Hz, yet had performance
nearly equivalent 1o the originai design.

A reduced-order compensator was then obtained trom the fuil-order design
by -emoving compensator modes which had relatively small observability and
controilanility as determined from a balanced realization of the compensator formad
w1 the PRO-MATLAB Robust Control Toclbex function, "cbalreal” (Ref 11) This
'ech,\t,aﬂ, removed most ¢l the nigh-fregiiency compensator poles and several other
raiatvely untmportant poies. A tew remaining poles in the 100 to 400-Hz range were
~areguond via @ modal truncation, and the final compensator order was cut to 30 states
aemum freguency near 11 Hzo Figure 6 shows the SV Bode piot for full-state
: . telt-order compenszater, and reduced-order compensator designs. Note that
boooAximUn singuiar vaiues agree nearly 'dentically across the three cases

R I

in additicn tc the 30-state LQG/LTR compensator, three second-order b
Wontegrators were appended to the controller to derive inertial velocity from the
sliccated QA 1400 accelerometer measurements. Thus, the controlles
Seranted i ine Uptima:3 invelved 36 states with 23 inputs and 16 outputs. 1ne
Optoia 3 was able to run the problem at a cample rate of 400 Hz.

Tabie 3 initiai DTA LQG/LTR Design Results

S Complex Poles Real Poles
" (Mz) | i) (Typelin (H2)] ¢ (%) | Type (rad/s)
© 14000 1S 142 |712 |E 1.92x 104 -2.27 x 103
1000 1S 354 |738 |F -1.9/x 104 267 x103
160 0= 3.78 6.25 F 200x 104 317 x 102
3.90 11540 (E -3.22x 104 351 x 103
L 2 g ?Sg f -384x104 -8.85x 104
j : - R 3. ' } 4 N4
9 1155 te o Jari 11699 [F [ Gaart0d  sea o
; e _ -9.99 x 10 -8.88 x 10
z 107 !E 4.82 32.12 I E 399 x 104 -897 x 104
oog o ree B lses Jease R TIEX S TS,
756 18390 1A owa 25z (¢ ["999x 107887107
73 i2ese JA 1sgs joss [F 0 }999x10% -912x10
GG 12700 A lsss l270 |E |-1.00x103  -9.43x 104
138 16122 |A 586 (288 € 1.00x 103 -9.46 x 104
550 5030 LA €73 14526 |E -1.00x 103 -9.53 x 104
L0 [e03 A /34 1642 |F 796 x 102 -9.63 x 104
150 {663 A {732 lezz [E
51 504 TA ga4 11387 |F NOTE:
oF 507 (A sos 1779 E S = Suspension Mode
SRENE LT 006 | 7251 {F A = Actuator Mode
sy biseg by 10.43 if;e 10 |F F - DTA Flexible Mode
(01609 E 061 4462 |E E = Estimator Mode
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The analytic LOS frequency response function (FRF) for a sitew commauna
apcut the Y-axis is shown in Figure 7. The four traces show open-loop, closed-'oon
‘uli-state teedback, closed-lucp with the reduced-crder state estimator designed ¢
LTR coupled to the CDM, and the same reduced order compensator coupled o .;r‘»:;
OTA model The performance of the reduced-order compensator design on ¢
Y sery noar that of tha full-state feedback case, thereby showing the success of
LTH and reduction design process. The FRFs shown in Figure 7 indicate a /C to 80,
reciuction in the root mean square (RMS) LOS jitter level based on response 1o white
anise between 2 and 10 Hz.  Another demonstratson of the predicted cuntrc
ctiectveness is seen in the simulated slew response shown in Figure 8. Ncte ihat duv
o otre passive damping designed intc the DTA, only a few modes are significart i tne
“oen icop slew response The active control system serves as a hugh authonty contc

fy ei'minate the response of these medes Together, these FRFs anc ! mc
"noponse show the dramatic vioration suppression achieved by the moederr optrw:z?
ator design apgproach, and the effectiveness of combined passive/active contre

A drawback tc the LQR method is sensitivity to modeling errors. Whila =2
an be evaluated for stability robustness and bandwidth, actual perfermanrce
Jsty degraded by differences between the analytic Gesign mode: and 7o
o structure. Recall that two DTA medals were used in this study: the pretes: m m
ST wm.( the COM was created, and the evaluation model, consisting of all mocazs
o DU i stiffened box truss) model. The following :,:c‘

both these models and presents correspcnd g
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Figure 7. Analytic DTA LOS About Y-Axis
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Figure 8. Relative LOS Slew Response, X-Axis

RESULTS

Open and closed loop FRFs were measured using burst random excitation at
disturbance input points 68Z and 72Z (see Figure 3). Measurements were made for all
the points which participate in the LOS, and the experimental LOS FRFs were
computed as a linear combination of the actual measurements. Figure 9 shows the
experimental open and closed loop FRFs for the LOS about the Y-axis due to
excitation at point 68Z. The somewhat noisy closed loop response is a result of very
low amplitide measurements being scaled by relatively large terms in the LOS
computaticrn.  The corresponding analytic predictions, based on the original DTA
model including all modes to 20 Hz, are shown in Figure 10. Note that while there is
good qualitative agreement between the actual measurement and prediction for the
open loop DTA, the LQG/LTR closed loop LOS measurement deviates significantly
from predicted between 3 and 5 Hz. The cause of this error was, in pan, due to the box
truss component model. When the compensator was coupled to the updated DTA
inode!, the FRF shown in Figure 11 resulted. This FRF shows a behavior very similar
to that observed in the 3 to 5-Hz range. However, the overall response suppression is
still less than predicted A rough calculation of the actual RMS jitter reduction achieved
by the control gives 63% versus 74% predicted using the updated DTA model.
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Figure 9 Experimental LOS FRF; LOS-Y/F68Z
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Figure 10 Predicted LOS-Y/F68Z; Original DTA Model
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Figure 11 Predicted LOS-Y/F68Z;, Updated DTA Model

The FRFs at selected control points demonstrated additional problems with the
LQG/LTR design. Figure 12 shows the FRF between 72Z and CP2, and Figures 13
and 14 show the corresponding analytic FRFs using the original and updated DTA
models respectively. Note the amplification of the closed loop FRF near 6 Hz.
Apparently, a DTA mode near 6 Hz is being destabilized even though the open loop
modal survey results indicated that the DTA flexible modes in this frequency range
were accurate. As shown by the analytic FRFs, this is not predicted by either DTA
model. Also, the control effectiveness at 3 Hz is much less than predicted. These
observations indicate that the LQG/LTR design is quite sensitive to smal! differences
between the CDM and actual structure.

Finally, Figure 15 shows a measured free decay for open and closed locp
oparation. This trace was produced by purely exciting the 2.6-Hz mode; perhaps the
most accurately predicted mode of the DTA. The LQG/LTR control law did successfully
apply a great amount of damping (on the order of 20% modal viscous) to this mode.
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Figure 13 Predicted DTA FRF; CP2/F72Z, Original DTA Model
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DTA FRF : CPYFI2Z, Updated DTA Model
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CONCLUSIONS

The open and closed ioop resuits ocuused above demonstrate that closely
spaced fiexible modes can be very dithcuit ooaceura e y predict withcut resonting to
empirically based mode! tuning. it 1s 7o 'Zl,ir:;3?'-§351 g *hat the greatest degree of
disagreement between predicted and measued resulls occurs in bands with closely

spaced modes. While one source of error was wantfied (box truss frequency 6% low),
thare are undoubtedly many smail differsrtss @ r'tW(,el ihe DTA model and actual
structure. While these dsscrepanueo woule rypzally be considered insignificant by a
structural dynamicist, they lead to sorr:w*-’w w253 than p'edicted performance of a
sophisticated high authority controi déi“lq"’ * =3 LQGL In fact, the control law
amplified the response of aven wall modaisc modas, st ’ch as those in the 5 to 7-Hz
range. It must be notad that the cor'alahu t rween the pretest DTA model and the
measured modes is probably much better it ;r. "~coic: ha expected with an actual LSS
which would not be tested until being asscintiad in orpt. Yet the DTA mode! still fails
to predict critical performance problems whein :W,lrd tc a modern controlier. In fact,
the results indicate that the control wouird rrooetly have been unstable without the
passive damping designed into the DTA.

(b
\(1 I

The gualitative analysis/test agrecment demonsitated oy Figures 9 through 11
serves to validate the analysis. A natura ‘* g.uestion s; what if no passive damping were
designed into the DTA? To answer {nis ar LG/LTR design was performed for the
originai DTA model with only 0.2% mcal viscous damping in all modes. As
demonstrated by the DTA ring truss component modal survey (Ref 5), and the
PACOSS D-Strut truss discussed in Re‘srence 12, this level of damping would be
expected from a tight, precision structure with ng intentional damping designed in.
The results of this design are shown in Figure 16. Note that the full-state teedback
design achieves performance equivalent t; that of the damped DTA closed loop
performance. However, when the remaining plant modes are included in the plant
mode!, a sharp peak near 4.5 Hz is evidant. Thi; demonstrates that without passive
control. more modes must be considered in tr.e control design, leading tc higher order
controliers requiring more control hardwars .ecluaters, sensors) with greater
capabiiity. Also, a higher order plant makas v2 antire control design process more
difticult since it is iterative in natura, requinsy muli inzight from the analyst .

When coup!ed to the stiffened box 17.ss UT,/: odel, an unstable pole at 3.5 Hz
was nresent.  So, with passive u,,u winn Che (G TR control was marginally
succssstul. and with iterations and empiiicai luning, could probably be made very
effective. But without significant invels :;'7' a ssive damping designed into the

structura. the sansitivity of LOG/L TR tn gumne sior variations would have lead to closed
locp instabilities and been very ditfinot oo a These problems will be present
whanever the controller bandwidth ivernes plnsely spaced flexible modes.

In summary, an LQG/LTR vibrains sooom=se. 20 control design was conducted for

Passive damping allowed many
structural modes to ba romoyved 1 <o ot madet in forming the CDM, thereby
greatly simplifying the design process Gy about 80% of the predicted
closed loop performancs was ac_,.h Svet e e an was siable and did signiticantly
suppress LOS vibrations. Some =irucoia '-di s were ampiified. but the relatively

a dynamicaily comglex, passive’y d hetie
3




high passive damping designed into the structure maintained stability. The results of
this experiment demonstrate that if high bandwidth, high authority modern control
algorithms are to be successfully applied to LSS, passive damping must be designed
into the LSS from the start.

LLQG/LTR Applied to DTA with zeta = 0.002
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Figure 16 LQG/LTR Design with Nominally Damped DTA (zeta = 0.002)
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'H.., Control for the PACOSS DTA*

Christopher T. Voth'and R. Michael Stoughton

Research and Technology Department
Martin Marietta Civil Space Company

Abstract

This paper presents an application of an ., design technique to the active
control of a passively damped large space structure test article. An active vibration
suppression compensator was designed for the Passive and Active Control of Space
Structures (PACOSS) Dynamic Test Article (DTA) using the H ... technique. Ana-
lytic studies indicate passive damping of the structure results in reduced sensitivity
to variations in plant structural muodes for a given level of performance.

The control problem was to reduce the X and Y Line-of-Sight (LOS) pointing
crrors caused by deformation of the structure duc to vibration. External disturbances
at four locations along thc DTA excite the vibrational modes of the structure, result-
ing in LOS errors. Passive damping clements designed into the structure result in
opcn-loop damping ratios ranging from .12 to 0.02. Active suppression of stnic-
tural modes is accomplished using 10 proof-mass actuators located on the structure.
Scnsors for active control provide 20 colocated inertial and relative velocity mea-
surcments as well as 3 noncolocated incrtial velocity measurements at locations
along the structure.

The H . approach allowcd the integration of performance requirements, robust-
necss requirements, and other design constraints into the design problem. Explicit
- presentation of model uncertainiies was important in achieving a closed-loop sys-
tcm insensitive to plant variations typical of flight hardware.

Implementation of the resulting controller on the DTA structure provided exper-
imental verification of closcd-loop system stability and performance in the presence
of model errors typical of test verified structures possessing high modal density.

An investigation of the relationship between the act:+» control and passive damp-
ing indicated that passive damping was instrumental in achieving performance and
rcduced scnsitivity to structural mode uncertainty. Passive damping of the structure
also aided in reduction of the contoller order for hardware implementation.

*Performed under Air-Force contract F33615-0 £-C-3222
'P.O. Box 179, Denver, Colorado 80201, (303) 977-4164




1 Introduction

Future scientific, commercial and military objectives in space will require construction
of Large Space Systems (LSS). Proposed operational performance objectives for these
large structures include stringent pointing accuracies, fast repositioning and short sctiling
times. LSS will necessarily be lightweight and exhibit a dense, low-frequency modal
spectrum with significant content within the control bandwidth.

Passive and active control methods wili likely play important roles in achieving perfor-
mance requirements for future LSS missions. The complexity of LSS structural dynamics
often result in significant model inaccuracies. Artempts to conwol similar large systems
through purely active means have often produced disappointing results.

The Dynamic Test Article (DTA) is a ground test experiment designed and built as
part of the Passive and Active Control of Spuce Structures (PACOSS) program. The
PACOSC ~rogmam was initiated 1o investigaie solutions 1o control-structure interaction
problems by combining passive damping approuches, designed into the structure, with
active control. The DTA was designed as a harcware validation experiment ¢ sanulate
a large pointing system and contains seven substructures representative of future LSS.

This report describes the application of the H., design method to the actve control
of the DTA large space structure experiment. Passive damping elements designed into
the structure provide increased open-loop structurat damping and vibration suppression.
Active control is used to futher reduce pointing errors due to vibrations present in the
passively damped DTA structure.

The H,, approach allowed integration of performance requirements, robustness re-
quirements, and other design constraints into the design problem. Representations of
model uncertainty are used to reduce the sencitivity ¢ f the closed-loop design 1o model
inaccuracies. Uncertainties within the control bandwidth prevent the cancellation of plant
dynamics by compensator zeros, resulting i a design which is less sensitive to model
errors. The resulting design is less sensitive to model errors typical of flight hardware.

Implementation of the active controller on the DDTA structure provided experimental
verification of closed-loop system stability and nertormance in the presence of model
errors typical of test verified structures with high modal density. Tests results are given
in the form of frequency responses and time response functions and show good agreement
to analytic predictions for the final design.

An anaiytical study was performed 1o investigate the relationship between the active
control and passive damping. Resulis wndicate that passive damping was instrumental in
achieving performance and reduced scasitivity 16 structuial mode uncertainty. Passive
damping of the structure also wded 1n reduction of the controller order for hardware
implementation.

The aigerithm used to solve the H . costrel problem is from ithe MATLAB Robust
Control Toolbox and is described in Reference 4]0 An excellent wtorial description and
overview of H . based control devign v pronvided by Maciejowski |31,
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Figure 1: Dynamic Test Article

2 PACOSS Dynamic Test Article (DTA)

Figure 1 is a picture of the DTA. The DTA is a ground based structure for experimental
validation of control design approaches applicable to LSS. The DTA is designed to
simulate a large pointing system. The control objective is to minimize the effect of
disturbances on the pointing accuracy of the structure. The pointing accuracy is defined
in terms of the relative alignment of selected points on the lower truss structure and the
secondary mirror structure on top of the tripod. The DTA is composed of 7 substructures
which represent the following real structures: the lower ring truss represents a structural
‘hardback’ for the system. The lower box truss structure is a support structure intended
for a large primary optical surface. The tripod system is intended to support a secondary
mirror. The dish antenna is a communications antenna and the linear truss is to support
sensitie equipment. Large side-panels represent two solar arrays.

2.1 Dynamic Description of DTA

The structure is symmetric about an axis running between the dish antenna and the linear
trus. and contains 39 modes below 10 Hz. Of these modes 6 are associated with the
suspension mechanism for supporting the structure, 10 are associated with the actuators
(each actuator is modeled as a 2" order system), and 23 are structural modes. Many
higher frequency structural modes exist in the system which are not included in the model.
The structure was designed with passive dumping elements to provide increased damping
of the structural modes. Damping ratios of the structural modes range from 0.01 to 0.12.
Si-uilar large structures without passive damping have damping ratios less than 0.01.




The 10 acwators are proof-mass actuators, with a + L0 inch stroke. Two actuators
are located on the tripod, six on the Jower ring wuss sructure and two on the box truss
structure. These actuators work well for vibrauon suppression; however since they rely
on the acceleration of a shiding mass o generare atuatuon foree, they are only eitective
within a bandpass frequency range.

Each actuator has two sensors colocated with 6 One 18 and accelerometer, hltered
measure tnerual velocity, and the other measures reladve velocity between the structure
and the proof-mass of the actuator. In addition to the 20 colocuted seasars, there are
three noncolocated accelerometers with ouput filtering w measure inertial veloces, one
located on each of the two solar arravs, anid one on the lincar truss.

2.2 Linear Model of DTA

A Linear Time-Invariant (LTDH mode! of the DTA was developed from a finite clement
analysis and verificd with extensive modal wsting of the assembled structure. The model
tormed the basts for the controller desigin and 15 more accurate than would typically be
avarlable for thight hardware.

The DTA structure contains modes bevond 10 Tz which have been truncated trom
the model. In addinon to the sensor vutpuis, the model has two destgn outputs. The
design ouiputs are X and Y axis Line-of-Sight (LOS) pointing errors. The LOS outpues
are measurements of the relative alignment between the lower optical surface and the
secondary mirror structure. The } axts error v measured along an axis aligned with
the axis of symmetry of the structure. The N axis error 1s measured relaiive to an axis
perpendicular to the Y axis and passing through the center of the solar array panels.

Vibrational modes of system are excited by 3 disturbance inputs located on the box
truss structure.  Of the 23 structural modes, oniv 12 affect the sensor measurement
outputs or the LOS outputs. The model v 1 the acuive control design contained only
12 structural modes and had a ol of 2% dyvaamic modes.

Figure 2 shows the maximum singuiar value of the DTA model trequency response
from the 4 disturbance inputs to each ot the W wat y LOS errors. The effect of passive
damping elements on vibration suppressios s apparent from these plots. Few sharp
resonant peaks characteristic of the response of an undamped structure are present.

3 Design Problem

The design problem facing the control cngeer can be descrthed as achieving the best
trade-off between a set of perfonnance reparements, design constraints, and sensittvity of
the system o model uncertanties. the privoary performance requirement tor the closed-
foop system s to minimize the relative LOS crioran both the v and Y axes resulang
tfrom disturbances  Disturbances actimg co the seucture are i the frequency range trom
1-10 Hz.
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Figure 2: Maximum Singular Values of the Response from the Disturbance Inputs to the
N and Y Axis LOS Errors for the DTA Model.

Design constraints and model uncertainties are:
e actuator displacement limited to 4 1.0 inches,
e unmodeled high frequency modes above 10 Hz,
e 5% uncertainty in structural mode frequency,

e 20% uncertainty in structural mode damping,

Additional constraints are related to the implementation of the controller. The con-
trotle: must be digitally implemented at a sample rate of 280 Hz. The maximum size of
the conpensator 1s limited to 58 states.

4 Synthesis Model

Muitvariable control design with modern techniques tnvolves formulation of design per-
formance objectives and other requirements in the form of a svathesis model. The syn-
thests model inciudes the modet of the prant dynamics with control inputs and sen<or
outputs along with additional mputs and outputs which are important in the design. De-
sign weighting functions on selected pliit inputs and outputs are augmented with the
plant model to form the synthests model.




With ‘H, design, performance reguirenicnts, design constraints and representations
of model uncentainties must be included in the syathests model. Model uncertainties muay
be represented as M. -norm criteria based on the small gain theorem. Development of
the synthesis model for A design is discussed by Bovd | 1]

The H . synthesis model for the DTA contral design is a transfer matrix represented by
P’(s). Inputs to P(s) are separated into a vector of control inputs, «{s), and the exogenous
input vector, w(s). The vector w(~} includes disturbances, and fictivous design inputs

vector of measured feedback signals, yi~1, and the regulated output vector, =i The
vector z(s) contains the performance criteita outputs and outputs which detine constraints
on the closed-loop system.

4.1 Perfecrmance Objectives and Constraints

The primary performance requirement for the DTA is to minimize the LOS error resulting
from the external disturbances. This can be expressed as minimizing

FL, . y

where:
H{(s) is the closed-loop transfer matrix of the plant and controller,

€, 18 an output vector contalning v and Y LOS errors,
d 1s a vector of disturbance mputs.

al]  signifies the maximum singular value.

The performance criteria may be represented as a werghting function W on the
design output ¢ os(~). Let Hifs) be a dingons’ ranstar tunction matrix:

where:
o (81 s a transfer tunction weighting for N oaxis LOS error,

we (s) s a transter function weighting for Yoaxis LOS error.

The H., design criteria for pertormance o t6 ind a controller such that

S N N N I A
which imphies:
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Figure 3: Magnitude plot of w "' weighting functions.
where:
€,0s. 18 the X axis LOS error,
X
€05, 1 the Y axis LOS error.

By reducing |w;'(s)| and |“’.:y] (s)| one can find the controller which minimizes the LOS
erTor.

A constraint on actuator control activity is included in the synthesis model by limiting
the closed-loop response from disturbances d(s) to the controller output u(s). The proof-
mass actuators are only capable of providing force over a limited bandwidth. To account
for this physical constraint, the closed-loop response is restricted to be ‘band-pass’ over
the effective frequency range of the actuators. This is accomplished through the weighting
function 11'z(s) on the closed-loop control vector u(s).

wr, () 0
Wils) = (6)
0 Wryo(5)

where:
w, (s) is a transfer function weighting on the i controller output.

in theory each of the controller outputs could be individually weighted. As a simpli-
fication an identical weighting is used on each of the outputs. Figure 3 is a plot of the
magnitude of the w ! transfer functions.

The 'H.. design constraint is to find . controller such that:

W el sl < 1. (V)




where:
H,q4(s) is the closed loop transfer matrix from the disturbance input vector
d, to the controller output vector u.

The disturbances d(s) form the design criteria input vector w.(s) which is included
in the exogenous input vector w(s). The outputs of Wg(s) and Wg(s) form the design
criteria output vector z.(s) which is included in the design output vector z(s) of the
synthesis model.

4.2 Representation of Model Uncertainty

The block diagram in Figure 4 shows the DTA model separated into a ladder structure.
Model uncertainties are represented by A blocks at several locations in the nominal model.
The block A,q4q4 represents unmodeled high frequency (>10 Hz) structural dynamics in
the form of an additive uncertainty across the plant. The legend of Figure 4 indicates the
types of uncertanties represented by each of the A blocks.

DTA model uncertainties shown in Figure 4 must be represented in the synthesis
model. Model uncertainties may be represented as H,, -norm criteria based on the small
gain theorem. Uncertainties shown in Figure 4 may be grouped into a single block
diagonal structure represented by A(s). The uncertainty block A(s) is normalized by
scaling gains at the plant inputs and outputs such that

HA(s)[lee < 1. (8)

Figure 5 is a block diagram showing the relationship between the synthesis model
P(s), the block-diagonal uncertainty matrix, A(s) and the controller F(s). The input
vector z, to A is included in the z vector of regulated outputs of the synthesis model.
The output vector w, to A is part of the ¢xogenous input vector, w, of the synthesis
model. From the ‘small gain theorem’ if a controller is found such that

W H ()]l < 1, (9)

where:
H,, 1s the closed-loop transfer matrix from w to z,

then the closed loop system will be stable for all possible plant variations represented by
Q. Maciejowski [3] and Doyle {2] provide more detail in modeling of uncertainty and
representation by the small gain theorem.

The synthesis model for the DTA contains a simpler set of plant uncertainties than
shown in Figure 4. This simplification is motivated by the overconstrained nature of the
complete 'H,. design problem. The H . problem results in a closed-loop system with

[ ()] < 1. (10)

By using the H,,, noirm from i to : as the design criteria, the diagonal structure of \
is ignored. The uncertainty .\ is taken to be a fully coupled matrix. As the size of
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Legend: Plant Model Legend: Uncertainties

{A;, B;,C;}: state-space representation Audd:  unmodeled structural modces
of i*? structural mode Aga,:  actuator modal displaccment
fLOS: X and Y LOS errors for ith mode
v sensor output vector As,:  sensor modal displaccment
u: controllcr output vector for ith mode
d: disturbance input vector Ag:  pole locations for i*" modc
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Figure 4: Block Diagram of the DTA Plant Model Showing Representation of Uncer-
tainty.
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Figure 6: Complete Synthesis Model for Finai H,, Design

the matrix A increases, the potential for introducing conservativeness into the design
increases.

An initial control design for the DTA used a synthesis model which did not include
the plant model pole uncertainties represented by A ;. This initial design was found to be
sensitive to variations in the plant dynamics. The initial control design was particularly
sensitive to the 18* and 19'* design model structural mode pole locations. Addition of a
feedback uncertainty representation A g, from the LOS error outputs to the control inputs
reduced the sensitivity of the closed-loop design to the plant dynamics.

Additional insensitivity to the 18" and 19'" design model modes at 3.47 Hz and
3.51 Hz was obtained by including uncertainty representations for these modes as shown
in Figure 4. The final uncertainty representation resulted in a controller with sufficient
insensitivity to plant variations.

4.3 Final Design Synthesis Model

Figure 6 is a block diagram of the final synthesis model containing the design model,
performance objectives, design constraints and uncertainty representations. Weighting
functions w,,(s) and w, (s) are constant gains. The weighting functions w, () are 3
order transfer functions with magnitude gain shown in Figure 3.

The gain block K44 is a diagonal scaling block on the input associated with the
additive uncertainty. K is a diagonal scaling matrix associated with the uncertainties
Ar,, and Ar,, on the 18'* and 19'" mode pole locations. K, is a diagonal scaling block

CAB-10
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Figure 7: Singular Values of the Closed-Loop Responses to Disturbances.

associated with the feedback uncertainty block Ap,.

The design process involves iterating on the selection of the design weightings and
scaling gains to obtain a satisfactory trade-off between performance requirements, design
constraints and sensitivity to model uncertainties.

The final synthesis model was 86" order, with a w input vector of dimension of
39 and z output vector dimension of 12. The resulting controller was also 86" order.
The size of the controller was reduced to the maximum allowable of 58" order using
balanced-truncation model reduction.

5 Analysis and Experimental Implementation

Figure 7 shows the closed-loop LOS errors for the X and Y axes and the control responses
to dis.i.rbances. Vibration suppression is improved over the open-loop system by a factor
of 8 in the .X" axis LOS error and a factor of 5 in Y axis LOS error. The original goal was
to achieve a factor of 10 improvement over the open-loop structure. However the initial
controller designs were sensitive to the 18'M and 19" design model mode locations. The
design objective was relaxed to obtain a factor of 5 improvement in LOS error, and to
reduce the sensitivity of the closed-loop system to variations in the 18" and 19'" modes.
Table 1 is a table showing the sensitivity of the closed-loop system to variations in the
18" and 19'" mode frequencies for the final design.

The H... designed controller was discretized using a zero-order-hold approximation,
and implemented on a real-time controller running at 280 hz. The closed loop system
was excited through the disturbance inputs and the sensor output data recorded. This
data was used to reconstruct, off-line, an estimate of the magnitude response from a

vAB-11
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Table 1: Allowable Range in Frequency of 18'h and 19" Mode For Closed-Loop Stability.

{| Allowable Variation | 18'" Mode | 19" Mode
| % increase 69.5 % o0
| % decrease 78.4 % 90.4 %
Y Axis Analytic Y Axis Experimental
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Figure 8: Comparison of Analytic Prediction of Y Axis LOS Error to Experimental
Reconstruction.

single disturbance inpu: to the X and Y LOS outputs. Figure 8 compares the analytic
prediction and the experimentally reconstructed Y axis LOS error response to a single
disturbance. At low frequencies the experimental reconstruction is corrupted by noise
due to low amplitude signals with large relative contributions to the LOS error. However
from about 3—10 Hz the analytic and experimental results show good agreement. A factor
of 5 improvement in LOS error attenuation is seen for the dominant open-loop peak at
6 Hz.

Figure 9 compares the open and closed loop time response of an accelerometer on the
structure to a disturbance input. Here the effectiveness of the controller in attenuating
disturbances is clearly evident. A low frequency suspension mode (not controlled) is
visible in the time response of Figure 9.
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Figure 9: Open and Closed-Loop Time Response of an Accelerometer Output on the
DTA Suucture to an Impulse Disturbance Input.

6 Contribution of Passive Damping to Control

The DTA structure was designed and coenstructed with passive damping elements for vi-
bration suppression. Typical LSS designed without passive damping have modal damping
ratios significantly less than for the DTA. An analytic study on the contribution of passive
damping to the perfommance of the active control is described in this section.

A representative ‘undamped’ model of the DTA structure without passive damping
was developed based on typical modal damping present in LSS. The active controller was
redesigned for the undamped structure using the same design criteria as for the passively
damped structure. Comparisons of the passively damped and undamped designs provide
a basi~ for evaluating the importance of passive damping.

6.1 Representative Undamped Structural Model

Modal damping ratios for the DTA structure with passive damping range from 0.023 to
0.121. An analytic model of a DTA sruciure without ~ussive damping was obtained
by reducing the structural mode damping ratios to 0.002. a value determined from mea-
sutements of the undamped ring truss component. Maodal displacements and frequencies
were not changed for the undamped model. Figure 10 is a plot of the maximum singulas
values of the frequency response from the disturbance inputs to each of the X and Y
LLOS error outputs.

The frequency response tor the undamped model is signihicantly different from the
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Figure 10: Maximum Singular Values of the Response from Disturbance Inputs to X and
Y LOS Error Outputs for the Undamped DTA Model.

DTA model with passive damning (Fig. 2). The undamped model frequency response has
many sharp resonance and anti-resonance peaks resulting from the decreased structural
damping. In addition, the undamped model shows significant structural response up to
10 Hz whereas the passively damped DTA shows less response at these higher structural
frequencies.

6.2 Control Redesign for Undamped Structure

The analytic DTA model without passive damping was used to redesign the H, controller.
With the exception of the DTA plant model, the synthesis model was unchanged from
the final H,, conuoi design. Syndiesis model weighting functions were the same as in
the final design for the passively damped structure.

A sensitivity analysis of the redesigned compensator revealed significantly greater
sensitivity to the 18'" and 19" design model mode pole locations than for the passively
damped system. Table 2 gives a comparison of the allowable independent variations in
frequencies for the passively damped system versus the system without passive damping.
The passively damped system can tolerate a large increase in the frequency of the 19
mode, while a variation of less than +1.0% in frequency of the same mode will result in
an unstable design for the undamped system.

The H,, compensator resulting from the undamped model had two unstable modes
which could not be reduced. Unstable compensators are generally undesireable due to
the difficulties in implementation.

CAB-14




Table 2: Mode Frequency Tolerances for Control Designs

| Allowable Frequency Variation 18" mode 19" mode ||
Passively Damped System +69.5%, ~18.4% | +o0,—-90.4%
Undamped System +48.8% — 77.6% | +0.5%. —42.0%

Controller order reduction for the H. active controller was affected by the absensce
of passive damping in the analytic plant model. Balanced model truncation of the H,
control designs to 58 states resulted in a total magnitude error bound of 0.1628 for the
compensator with passive damping compared to 0.2968 [or the ccmpensator without
passive damping. Reduction of the undamped system compensator to approximately the
same total error resulted in a controller with 61 states.

To evaluate the influence of passive damping on controller performance, the H
controller for the undamped model was redesigned to recover, in part, the sensitivity
margins of the H, conwoller for the passively damped system. The LOS error perfar-
mance bound (i.e. W '(s)) was relaxed by a factor of two for the undamped DTA model.
The uncertainty input gains were increased uniformily to minimize the sensitivity of the
undamped closed-loop system to the mode pole locations of the model.

The full-order H,, compensator was 86 states for both the passively damped and
undamped DTA models. Figure 11 shows frequency responses to the LOS errors and
control feedback from the disturbance inputs for the closed loop full-order design without
passive dumping. Both the LOS performance and control activities are similar to those
of the passively damped system.

The structural mode frequencies of the passively damped and undamped models were
perturbed by equal amounts of less than 10% of their nominal values. Figures 12 and
13 show a comparison of the LOS error response to disturbances for both the passively
damped and undamped closed-loop systems. Clearly, from Figure 12, the sensitivity
of the undamped system is still greater than for the passively damped system. For the
same ‘requency perturbations the passively damped design meets the original performance
bound while the undamped design violates even the relaxed performance requirement.
The peak response of the LOS error is roughly two orders of magnitude greater tor the
undamped system as for the passively damped system.

7 Conclusions
An H . design approach was applied to the active control of a passively damped large
space structure test article. Performance objectives, design constraints, and model uncer-

tainties are directly included in the design process. Representation of model uncertainties
was used to achieve designs which were insensitive © plant model variations.
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Undamped ‘H.,, Designs with Perturbed Model.

Analytical studies into the effects of the passive damping on the active control de-
sign reveal that the presense of passive damping decreases the sensitivity of the active
controller to model errors and allows for improved performance. Furthermore, active
control designs for the passively damped structure were tound to be easier to reduce as
compared to designs for the model without passive damping.

Hardware implementation of the active control design provided experimental verifi-
cation of the design results. Analytical prediction showed good agreement to results from
the test data.
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ACTIVE DAMPEING OF A
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Abstract

The control-structure interaction of a flexible structure, namely a cantilever beam, and a reaction
mass actuator (RMA) is investigated. Mathematical model, in the form of differential equations
and transfer functions, is obtained. The study is broken into two steps: (1) open loop and (2)
closed loop. Within the open loop part, the RMA is broken into two sub-steps: (a) dead RMA and
(b) passive RMA. In the closed loop part, negative feedback of the beam tip velocity is used for
acave RMA. Transient responses and root loci are given.
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n ion

The system under consideration is a cantilever beam with a RMA (reaction mass actuator), also
called PMA (proof mass actuator) attached to the tip of the beam (Figure 1). The RMA consists of
two mechanical components: the magnet-shaft assembly of mass m and the housing of mass my,.
When the magnet-shaft assembly is fixed to the housing, the RMA is called "dead RMA," and
when the assembly 1s free, is is called "passive RMA." When the control loop is closed, the RMA
is called "active RMA." The control-structure interaction (CSI) of this electromechanical system
will be analyzed in the following steps:

1) Open loop

a) Dead RMA. The simplest model is a single-degree-of-freedom (SDOF) system. The
undamped natural frequency is determined, and the beam tip response, which is obtained
experimentally, is presented.

b) Passive RMA. The simplest model is a two-degree-of-freedom (TDOF) system. The
undamped natural frequencies are determined, and the beam tip response which is obtained
experimentally, is presented.

2) Closed loop
Active RMA. The velocity of the beam tip is used for negative feedback. The control-
structure interaction is investigated. The transient responses and root loci are shown.

System Dynamics
1) Open Loop
The governing differential equation of the beam, using Euler-Bernoulli model, can be shown as
d*y d%y
EI +pA—= f(x,t O<x<l 1

where E, I, p, A, | are the Young's modulus, area-moment of inertia, density, cross-sectional
area, and length, respectively.

RMA

ENNNANNNNRNNNNNY

Figure 1 Cantilever beam system with RMA (Reaction Mass Actuator)

a) Dead RMA

The system consists of a cantilever beam with a concentrated mass at the beam tip. The frequency
equaton of the system can be shown, see [1] for example, as




M,
1+ —— 1 - AL{tanAL-tanhAL) =0 2)
cosAlLcoshAL  pAL

The transcendental equation (2) must be solved numencally to yield the eigenvalues A, then the
natural frequencies are given as

Since the beem meoedel given by Eq. (1) vields infinite degrees of freedom, the control-structure
interaction of the beam and the RMA i1s difficult to analyze. The problem is more tractable if the
svstem with dead RMA 1s modeled as SDOF for the fundamental mode. Figure 2 shows this
model with K, M, and b are the equivalent stiffness, equivalent mass, and equivalent damper,
respectively. The mass and stiffness can be calculated from physical properties, but the damping
must be determined experimentally.

X
—
b
-
M+m

—\—
K

AN

Figure 2 A simple model of the system with dead RMA

Irean e found in vibration texts, see [2] for example, that
. REI ‘
A = “;fi- M= m, + 0236PAL (4

ciand meore the masses of the RMA magnet-shaft assembly and housing, respectivelyv.)
Anexpeniment was performed, where the physical parameters of the tested beam (Aluminum 6061-
Toyare

b, s
L =30.75in. A=3in-0.25n E =10x10° psi p=10.2588 s

in®
Thus, e cquvalentsuftness and cquivident mass are calculated to be

Ib b, s® ib, s*
K=103— M=633:10"—— m=647x10"--L—
in in in

The narural frequency is caleulated and observed to be 3.8 Hz and 3.5 Hz, respectively. The
respron e atthe beam up of the svstem with dead RMA s shown in Figure 3.
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Figure 3 Response at the beam tip with dead RMA
b) Passive RMA

When the moving part of the RMA is released, the RMA acts as a passive vibration absorber
(Figure 4). When b = 0, the system becomes the classical Den Hartog's vibration absorber

problem [3].

X y
—— —
b D o L
— B
M. m|
K  k :
:  absorber !

Figure 4 System with vibration absorber (passive RMA)

The differential equations are

R T 1 R B

where the undamped natural frequencies can be obtained as
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2 (M+m)k+mK_\/((M+m)k+mK)2_ Kk

- 2Mm 2Mm Mm
(6)

2w (MAmE+mE (M +m)k+mk © Kk
2 2Mmn 2Mm Mm

The response at the beam tip with passive RMA is shown in Figure 5.
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Figure 5 Response at the beam tip with passive RMA

2) Closed Loop - Active RMA

The closed loop control utilizes the beam tip velocity x for negative feedback and the system can be
conceptualized as shown in Figure 6,
fdml

RMA [
li,i,x

kxT

=

BNNNNNNNNNNANNS

X
c 44— integrator 4J

Figure 6 Conceptualized control scheme
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For physical implementation, an acrual system can be shown as in Figure 7.

2‘ /,(ol . )
¢ —} z -Ki f ot :
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Figure 7 Implementation of the control system

When closed loop control is applied, the structure-RMA system shown in Figure 7 can be modeled
as an electromechanical system (Figure 8.

Y
m
] m
m
R J .
° N
.
X y
(b)

Figure 8 Electromechanical system: (a) mechanical and (b) electrical
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The governing differential equations for the mechanical part can be obtained as

M O}[x b+c¢ —cl[x K+k —klfx fLi-f
ST T = (7a)
0 mlly c ¢ ko okl [
where fy and f, are the disturbance force and control force, respectively. The differential equation
tor the electrical part is
di
e=Ri+L—+e¢
e (7b)
The electromechanical coupling is given by
fo=k,i e, = kn(y-x) ®)

If the beam tip velocity is used as negative feedback for the active RMA,

e=kx 9)

8

where &, is the gain. Then, combining Egs. (7-9) yields the closed-loop system equations as

M 0 0O]x b+c -c Ofx| [K+k -k K, {[x 5
0 m OKVp+ —c c ORyp+| =k k =k [yr=<0 (10)
0 0 oJ{i) |-(k+k,) k., L|li 0 0 R i) {0
Taking the Laplace transtorm,
Ms*+(b+c)s+K+k  —(cs+k) k, |[X(s)) [F,(s)
—(cs+k) ms*+es+k —k, HX(s)b={ 0 (1D
—(k, +k.)s ks Ls+R || I(s) 0
The transfer functions relating x, v, 1, and fy are given by
X(s) H(s)
Y(s) =< H,(s)Fy(s) (12)
(s) H,(s)

where the tollowing are obtained with the aid of Mathematica {4]

X(s) mL 5P+ (mR + cL)s? +(CR+kL+k,,,2)s+kR

H(s)=
Fy(s) A(s)
Yi(s) cLs®+{cR+kL+kk +k*)s+kR
M) =28 ( k') (13)
F,(s) A(s)
5 (A O QT TS O +kk
I3 U}f J;mu,;, , ;__,;l

F,(5) Aly)
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As) = {MmL}s’
+{(MR + Lb)m +(M + m)cL}s*
H{(M+ m)cR+ (Mk -+ mK +mk +bc)L+ (M +mk,? +(Rb+ kKo )mls®
+{(Mk + mK + mk + bc)R + (Kc + bk)L + bk, ? |s*
+{(cR+ Lk +k,)K + Rbk}s
+H KkR} (14)
The response at the beam tip, with active RMA, for different values of gain is shown in Figure 9.
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Figure 9 Systemn response with the active RMA: (a) moderate gain and (b) high gain
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It is interesting to note that, for an otherwise stable control system, by simply switching the
electrical leads of the RMA, the system becomes unstable or self-excited vibration is induced
(Figure 10).
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Figure 10 System response to positive feedback

The stability behavior of the controlled system, as k and ¢ of the RMA are varied, can be seen in
Figure 11.
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Figure 11 Root loci: (a) decreasing k and (b) decreasing ¢
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Discussion

From the experimental results it can be seen that for the uncontrolled system (with dead RMA), the
beam tip vibrates in excess of 45 seconds (Figure 3). The system's ability to dampen out vibration
is improved by the use of passive RMA. It is about 4 seconds or 10 times faster (Figure 5). The
system is further improved by the use of active RMA where the settling time is anywhere from 2
seeonds 1o losy thaa ! second Jepending npor the values of control gain used (Figure 9.

Active control applied to structures provides a powerful means of suppressing vibrations, but it
also incurs some "costs." These costs are mainly: more expense; more complexity in electronics,
hardware and software; and less reliability. With negative velocity feedback for the configuration

under consideration, the control system is less reliable because it may become unstable, for certain
values of physical parameters and control gain. This fact is also discussed by Inman [5].
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ABSTRACT

The focus of this study was on computationally verifying that passive electrodynamic
damping was competitive or superior to current damping technologies recommended
for Large Space Structures (LSS). Electrodynamic damping is linear and is
characterized by a dash pot dissipative force which is proportional the relative velocity
of the damper components. The constant of proportionality is c. The study investigated
the maximum ratio of ¢ to the mass of the damping system as well as the frequency
dependence of c¢. Both analytic and ADINA models of an LSS-like structure, the Air
Force Wright Aeronautical Laboratory 12 Meter Truss (TMT) were used, together with
TMT data, to understand and verify Passive Electrodynamic Damper (PED)
pertormance.

The study results indicate that the Auxiliary Mass PED (AM-PED) is competitive
or superior to active dampers, in damping TMT bending modes, when the AM-PED
weight is comparable to that of active damping actuators. This is important because of
the enhanc.:d reliability and cost savings of a passive damping system. An AM-PED
does not require sensors, a power source or a computer control system. Although a
detailed comparison was not made, it appears that equivalent weight strut PED
systems may also be superior to viscoelastic-material strut dampers. This is important
because PED systems do not outgas and are stable with respect to environmental
temperature variations. In addition PED system performance is easily calculable, c is
independent of frequency and of amplitude for the low modal frequencies
characteristic of LSS.

" 2241 Foothill Lane, Santa Barbara, CA 93105, (805) 966-3331
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1.0 INTRODUCTION

This paper describes research that was supported by the Swrat=jic Defense
Initiative Organization (SDIO). The object of the study was to investigate the fea<ibility
of specially-designed, spacecraft vibratior-damping-devices, known as a Passive
Electrodynamic Dampers (PEDs). PEDs absort mechanical energy, by means ohmic
heating, when there is motion relative to the fieid of a permanent-magnet. Future
military and non-military spacecraft are expected to be large and flexible, with many
low frequency modes. Damping these modes is critical to the operation of some on-
board sensors and equipment. A successful PED would theretfore be applicable to
military non-military space programs.

The goal of the study was to verity PED damping effectiveness by
mathematically modeling and evaluating PED electrodynamic chararteristics, as they
relate to Large Space Structures (LSS), and computationally simulating the
mechanical effect of PED configurations on LSS. The approach taken was to focus on
one LSS test bed, called a model LSS (MLSS), since there was time to consider only
one LSS simulation in the project. The electrodynamic modeling was more geiizgral,
shcwing how the key PED design parameters - weight for example - varied as a
function of LSS and space environment characteristics - frequency and temperature
for example. The idea was to design a PED for the MLSS using the general PED
design equations that evolved from the research. The MLSS modal damping was first
approximated analytically so that the key parameters and their relationship to the
damping could be identified. PED caused, LSS modal-damping was then compared to
MLSS data obtained using other damping systems. Because the analytically
calculated damping was satisfactory the FED was incorporated into an ADINA
(Reference 1) code model of the MLSS. The ADINA model gave the most accurate
PED modal damping eftectiveness calculation and allowed the most accurate
comparison with other damping methods.

After much consideration and discussion with the appropriate government
agencies the MLSS chosen for the study was the AFWAL twelve meter truss (TMT,
References 2 and 3). The reason for this choice was that the TMT was the simplest,
technically acceptable structure for which adequsie data was available.

Much of the research presented in this paper is an evaluation of the damping
characteristics of a particular PED configuration called the Auxiliary Mass Passive
Electrodynamic Damper (AM-PED). Both anaiytic and computer simulation results
show the AM-PED is competitive with active damping systems anticipated for
spacecraft use. Substitution of the AM-PED for active damping could mean large
increases in space platform damper reliability, weight reduction and a lower cost
damping system. The AM-PED is expected to be a very important addition to the
technologies used for LSS damping. Other PED configurations are expected to also
be important but they have not been studied in as much detail. The Strut Passive
Electrodynamic Damper (S-PED) appears to be a particu'arly promising substitute for
viscoelastic materials (VEM) in damping structural truss modes. PED damping
corcepts, electrodynamics and space environment characteristics are discussed in
Section 2. Sections 2 - 4 discuss the results and analysis of this study. Section 5
presents the conclusions and recommendations. In the next subsection the rationale
for studying low frequency dampers, in particular PEDs, is discussed




1.1 LARGE SPACE STRUCTURES (LSS) AND DAMPING

Increasingly greater roles are anticipated ior satellites in the civilian economy,
in government research and in military planning. Planned space structures are
therefore becoming larger with more complex missions and increasing power
requirements (References 4 and 5). The fiscal and complex-mission, space-structure
requirements, for these planned sysiams, result in lightweight, flexible, loaded, LSS
design concepts with very low modal frequencies. In combination with the lack of
gravity these requirements also mean thai there will be small frictional energy
dissipation an¢ modes will be poorly damped.

One proposeu snlution to the LSS structural requirements has been the use of
trusses as the basic suppon structure. Trusses are both lightweight and rigid and have
been designed in beam configurations. The plain is 1o mount sensors, equipment and
e~lar panels on these lightweight frames. The resulting ' SS are truss-type structures
connecting a variety of flexible components. Predictions indicate that these flexible
components will likely have natural freguencies in the same range as the dominant
truss modes (Reference 5).

A number of groups have developed experimental LSS structural models to
verity their structural dynamic computational tool predictions, as well as verify
proposed damping concents The PACOSS (Passive and Active Control of Cgace
Structures, Reference 6) dynamic test object and Twelve Meter Truss (TMT,
References 2 and 3) supported by the Air Force and the Dynamic Scale Modei
Technology (DSMT, Reference 5) program supported by NASA are examples. The
PACOSS program is particularly advanced and experimental results appear to
support the current LSS damper design philosophy (Reference 7):

(1) Damp as many modes as possible passively, using VEM.
(2) Damp all remaining modes (assumed 0 be only a few) by means of active
damping.

The TMT approximates a twelve meter beam and experiments have been
performed in both a cantilevered and a free-free configuration. The cantilevered
configuration is not "realistic" for a complete LSS'! and is a compromise so that
experiments can be performed with low-frequency structural modes ‘2.25 Hz). TMT
cantilever experiments have been performed and analyzed with ana without VEM
struts. Free-tree TMT experiments have been performed with and withou VEM struts
but the results have not been analyzed in detail. Active-damper, cantilevered-TMT
NASTRA' - experimental pretest predictions are also available.

Not only damper development but LSS designs and structural dynamic testing
are still in the research and development stage. At the present time VEM is the passive
damper of choice and for the most part, in practice, it has been used in strut
configurations (References 3 and 6). However, there are some shortcomings to the
use of this material. The full temperature variation for an cxterior spacecraft component
could be 1500C, from about -500C to about 100°C. Some VEM materials have a
useful range of only 20 - 30 °C. It is recognized that one material will not suffice for
every application and that active heating elements will have to be used in conjunction
with VEM to maintain constant damping (Reference 8), for some applications. in
addition VEM is nonlinear and its damp ..g characteristics are not easily predicted.

! There are structures that are expected to be cantilevered on the truss. The solar paddles in Reference 5
are an example
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These shortcomings imply uncertainties and expense in damper design as well as
possible reliability problems in actual practice. In addition there is the question of the
VEM damper effectiveness with respect to its weight. in the TMT experiments the final
VEM passive damper configuration weighed about 50% more than the undamped
truss. Not all of this damping material was effective in damping the modes, however,
and future TMT studies may investigate the elimination of the least effective struts.

At the present time a common active damping system uses a coil and
permanent-magnet actuator system. A current is generated in the coil and exerts a
force on a moving magnet corresponding to a predetermined algorithm. One such
algorithm is to make the force proportional to the velocity of the attachment point for
example. The system is very convenient in its application: the actuator is attached at a
position of maximum modal amplitude, consistent with dynamic stability requirements.
In addition, because it is made of metals, its performance is very stable with respect to
expected environmental temperature variations. There are some shortcomings,
however. One of these appears to be that the force exerted is limited by the maximum
current that can flow through the coil. Too high a current will melt the coil. Most of the
power dissipated in the coil appears to result in a restoring force which changes
direction as a function of time. Only a smalil portion of the force actually damps the
motion of the LSS modes. Additionally the actuator system requires motion sensors, a
computer control system and a power supply. All these cystem components add
weight and contribute to system reliability issues.

If the objective of the active damping system is to damp only a few modes,
replacing the colactrical-power generated restoring force with a spring and a
permanent-magnet system may be the most efficient and cost effective design. The
AM-PED herein is a passive damping device which does just that. It has all the
advantages of this active damping system but apparentiy none of its disadvantages. In
addition it may be more effective in damping LSS modes than an active damp.ng
system.

2.0 THE PED

In this section the PED concept is first discussed from a general point of view. In
Section 2.1 the AM-PED is discussed and then in Section 2.2 the design constraints
imposed by the electromagnetics is examined. Finally in Section 2.3 the effect of the
space environment on the PED is discussed.

The basic PED concept is tc mechanically couple LSS vibrations to relative
motion between an armature and a magnet. The relative motion gives rise to a
dissipative force F which is proportional to the relative velocity of the two PED
components. That is

F =ocv, (1)

where v is the armature/magnet reiative velocity and c is the constant of
proportionality. Figure 1 illustrates the principle. The relative motion generates a
current in the armature and vibrational energy is absorbed via ohmic heating. This
kind of damping - electromagnetic damping - has been considered in the past for other
kinds of systems (Reference 9) and so the concept is not new. What is new is the
application of the concept to LSS and the particular LSS PED structural and magnetic
configurations. Because of the low LSS frequencies e'actromagnetic damping, as
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manifested in the PED design, is a very weight efficient LSS vibration damper. This
will be demonstrated in Sections 3 and 4. Because of superior PED, spacecraft-
environment, material-properties and its simplicity it is a very desirable damper
system.

Armature

N 4
EEE—K 3 2r Motion
(Velocity - v)
Pole Face
(area mz)

Magnet

Figure 1. Genenc PED Components

The PED is essentially a dash pot, for all LSS vibrational amplitudes of concern,
and the mechanical analysis is relatively straight forward. Difficulties lie in efficiently
designing the magnetic circuit and in coupling the dissipative force to the complex
multi-modal mechanical motion. Two coupling configurations were studied: (1) the
Auxiliary Mass Passive Electromagnetic Damper (AM-PED), and the (2) Strut PED (S-
PED). The idea behind the AM-PED is to transfer the LSS vibrational energy to a proof
mass anc. :hen dissipate the the proof mass energy via ohmic heating. The AM-PED
can theoretically be attached anywhere on the LSS the vibration amplitude is large.
The S-PED is used mainly as a component of the LSS truss support structure to
dissipate truss vibrations.

For most coupling the PED is designed to have is own restoring force
proportiznal to displacement and consequently its own resonant frequency wg. The
PED has, of course, its own mass, m, as well. One design problem is choosing the
PED parameters, ¢, wg, and m to optimize the damping over the LSS frequency range
of interest. For a given m, we are actually optimizing the damping by appropriateiy
choosing the parameters ¢/m and ux.

One of the advantages of the PED is that it is a simple, linear, mechanical

system and its effect can be calculated. However, coupling to a complex LSS means
the analysis is more complex than for a one dimensional system. In general the PED
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damping of a given LSS of mass M and frequency Qon (n =0, 1,2, 3......... ) will not be
the same as for a one dimensional system of mass M with a damping force

proportional to velocily. That is the percent oi critical damping, yn. of the particular LSS

mode will not be simply ¢/(2MQgn). We can expect that yn will be related to the effective
mass of the LSS, for the particular modal vibration of concern (the total LSS mass is
not necessarily effective in the vibrations of a particular modej, and to the PED
parameters. These latter comments are particularly relevant to the AM-PED
configuration.

We now consider how the PED parameter ¢ (equation 1) is related to the PED
design parameters. As expressed in equation 1, the force is cv, v is the relative velocity
(m/sec), and

C = onrd(2s)B2 (kg/sec), (3)

where B is the flux density field (Weber/m?), ¢ is the conductivity {mhos/m) r is the
magnet radius -(m) and 2s the thickness (m) of the armature. Reference should be
made to Figure 1. Equation 3 assumes that none of the magnetic leakage flux is
effective in damping the system and is thus a lower bound on c: the armature will be
wide enough to cut most of the leakage flux lines.

Equation 3 is not valid for all frequencies and although an arbitrarily large ¢ can
be developed simply by making the magnet large enough the important ratio c/m
cannot be made arbitrarily large. Equation 3 is valid so long as current can be
generated throughout the thickness, 2s, of the armature. If the frequency of oscillation
is very large the current will only exist on the surface of the armature and 2s in
equation 3 will be replaced by a smaller number. Therefore at high frequency ¢ is
smaller than expressed by equation 3. The depth of penetration of the current into the

armature is controlled by a parameter called the “skin depth”, 8, which has the

dimensions of length. Roughly speaking when § >2s equation 3 is valid. As we will see
in Section 2.2 we can expect equation 3 to be valid below about 50 Hz. This frequency
is far above expected LSS frequencies.

Equation 3 shows that the dimensions of the magnetic system (Figure 1) enter
the calculation of ¢ {the area, nr2, of the permanent-magnet for example). What is not
obvious from equation 3 is that the magnetic field B is also dependent upon the
dimensions of the magnetic system as well as the type of magnetic material used.
Optimized designs have a maximum c¢/m value which is dependent upon the magnetic
system design. The maximum practical LSS ¢/m ratio, for an aluminium armature, is
about 500 sec-1. We will see in the next section that the ¢/m ratio is relevant when
designing a AM-PED to damp more than one LSS mode. It is also important when
comparing the equivalent weight of aiternative passive damping concepts. In Section
3.2 we roughly compare the S-PED to VEM struts.

2.1 THE AUXILIARY MASS PASSIVE ELECTROMAGNETIC DAMPER (AM-
PED)

The AM-PED concept is straight forward and very simply applied to a LSS. The
idea is to continuously transfer LSS vibrational energy to a proof mass and dissipate
the proof mass kinetic energy. In the case of the AM-PED the proot mass is essentially
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the magnetic systerm and the dissipative force is described by equations 1 ard 3 Th.
AMPED ts made lightweight and springs act as a linear restoring force Reo':*
rrotor casoes curents o flow in the armature resulting in energy dnes:pa.lc '
Dresert GIBCUSSION T3 only necessary to know that the dominant weight ¢f tnw -

[ e

arices from the ”“%g"“*rc system taken to be thie mass m. For reference the amg 4.

of magn=t moticn wiii be about an inch (maximum LSS vibration ampiitudes ar-
fractans »f aninchj, the overall dimensions of the AM-PED designed for the T&!1 w
c2abc i omx 10 cem x 10 ecm with a mass roughly equai to 4 lbs. Tnis iz a2+

compact device which 1s attached externally to the LSS (in this case the TM1, .’
ot maxmum vibration amnlitude. (Note that many AM-PED Aesi¢g~= .
Suie ey different dimensions and magnetic materials.) As we will see AM-Fz 0
n0eG s fonecied 1o excead 5% for very reasonable AM-PED masses and cemo-
wiin active damaing systems. 5% damping is approximately the requirement for mar.

(@] £

Sygtems Holerance 7).

2.2 ELECYRODYNAMIC PED CONSIDERATIONS

' ine AM-PED armature and the magnetic field. The flow of current in 1ha

Az disc xa)ed in Section 2.0, the damping constant, ¢, depends upon the vaus

srralure i "’"@(‘fed by the development of electric fields which oppose the ‘0w
worent These electric fields are manifested through the skin depth introduced -
Seonnn ? -.“)‘ The armature current flow also generates a magnetic field which ma;
sppose tne magnetic ield of the magnet. An opposing magnetic field might reducs tne
550 on tre armature and demagnetize the magnet, so it must be considered in tha

S

A © i eithar the opposing electric field or the opposing magnetic field effects wer--
sornrantat thy could reduce the damping constant below that expected fio-
GLnss it the detailed analysis we find, as expected, that the parameter of greatact
©oooaree e alectrodynamic skin depth 6 (meters)
&= lupow2) 12 ey
e parmeabiiity of free space (the armature is made of non-magnet ¢
crein o paecaslto 4nx 1077 h/m, o is the armature conductivity (mho/m), and o 3
e ATy recency of motion. In order that the current in the armature ioass o
et L0 e s L3t be larger than about twice the thickness of the armature For
e et e areatice dimensions, skin depth should not be a prooiern v
CLooas e s e absut 50 Hz.
~odcn thar the Jimensions of the armature not affect the design of the system
Liianons szzggest a minimum armature width to magnet diameter ratic:
: ot ‘wr‘gth of the armature is determined by other design reqmrpmema
- oovpaides can affect the high frequency content of the armature-cur:
(L R md howsver if designed properly the damping sysien: e

HEOTS J*“

2.3 LD SPACE ENVIRONMENT CONSIDERATIONS

e ais (VEMY are the recommended passive damping .o
S turcse withen structural components of truss structures (raso




for example). However, large temperature variations in space make designing passive
VEM damping treatments difficult (Reference 8). The full temperature variation for an
exterior spacecraft component could be 150°C, from about -500C to about 100°C.
Some VEM materials have a useful range of only 20 - 30 °C, making many materials
and, depending upon the specific problem, temperature control elements necessary.
One of the virtues of the PED designs is that, because they are made of metals, they
are extremely stable with respect to temperature variations.

The Curie point (temperature at which magnetic properties change - Reference
10) of all common magnetic materials is many hundred degrees C, far above the
highest expected space environment temperature. The most temperature dependent
parameter in the damping constant "c" (equation 1) is the conductivity. "c" is
proportional to the conductivity (equation 3). For temperatures near and above the
Debye temperature (Reference 11) of the material, the conductivity varies direcily with
absolute temperature. -50°C is 223 °K and many metals have a Debye temperature
near this value. The Debye temperature of silver, the armature material giving the
largest ¢/m value is 226°K, for example. The ratio of absolute temperatures over the
expected temperature range is 373/223 = 1.67 and so "c" is expected to vary by less
than a factor of 2 over the full temperature range. A look at tables of material data
supports this expectation. if a PED experienced the full temperature variation (an AM-
PED at the end of a solar paddle, for example) it could be designed to operate most
effectively at the mid temperature range (about room temperature) and then the
expected variation in "c" would be less than £30%.

Because the coefficient of thermal expansion for the materials under
consideration is about 10-20 x 10-6 per degree C, the expected length or gap changes
are only about .3%, too little to effect PED operation.

The effects of environmental temperature variation on the spring of the AM-PED
are also expected to be manageable. Considerable information exists about the
effects of temperature on the mechanical properties of metals (Reference 12). This
information suggests that strength may change by +10% over the applicable range.
This can easily be addressed in the detailed design of the spring. The small
displacements, +.17% imposed by thermal expansions can be considered similarly.
Finally, the stiffness may vary by +5% which should not significantly detune the device.

3.0 PRELIMINARY DESIGN OF PED SYSTEMS

In this section we will be concerned with analytic evaluations of PED
performance and the impact of performance upon design parameters. The major focus
is upon the AM-PED, considered in Section 3.1. The analytic approximations and
discussion in Section 3.1 are a background to the consideration of another PED
configuration, the Strut-PED (S-PED). Preliminary estimates do suggest that the S-
PED may tc be very competitive in performance with VEM damping strut
configurations. In addition the S-PED does not have any of the VEM temperature
dependence, outgassing, nonlinearity and frequency dependence problems.

3.1 AM-PED PRELIMINARY DESIGN FOR THE 12 METER TRUSS (TMT)
One of the objectives of this section is to compare the predicted performance of

an AM-PED with that of an equal-weight actuator, active-damping system. Active-
damping computer predictions have been made for the TMT in its low frequency
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cantilevered position (References 2 and 3). These predictions are compared with an
analytic, continuous-beam model of the AM-PED/TMT combination. In Section 4 AM-
PED performance is compared with the active damping calculations utilizing a ADINA
computer model of the TMT. This later comparison is important because the actual
TMT is not continuous and the beam-model resonant frequencies differs from the
experimentally measured TMT frequencies. The measured ratio of the second bending
to the first bending, TMT mode frequency is 10.72/2.26 = 4.74. The frequency ratio of a
one end clamped beam is 6.27 sc the analytic model is reasonable but differences
should be expected between the analytic model predictions and the more accurate
ADINA model. As we will see in Section 4, AM-PED damping is actually more effective
with the ADINA truss model. This is in part due to the fact that the truss does not adjust
its modal shape to external forces in the same manner as the continuous beam. The
analytical modeling provides a framework for understanding how to design an AM-
PED and is used to make preliminary estimates of AM-PED performance. (In the
original study AM-PED effectiveness on a free-free TMT was also computationally
simulated. The analysis is not presented in this paper. The damping was found to be
23% less than the cantilevered beam, for equivalent weight AM-PEDs.) The general
dynamical problem is considered first.

What is required is to solve the dynamical equations of motion of the AM-PED
system coupled to the LSS. The design requirements are that the percent of LSS
modal damping should be about 5% so the damping can be solved for by a
perturbation analysis. In addition the mass of the LSS, M, is much greater than m so

m/M can be treated as a small parameter. As the detailed analysis shows, if Fg(w, x) is
an expression for the force exerted on the AM-PED by the LSS, where x is the

amplitude of motion for the frequency o, then the frequencies of the system can be
obtained from the equation

Fs(o,x)/M = Bo?g(w)x, (5)
where
B =m/M, (6)
g(w) = (-2ri + W2(W2- 1) + 4 12)/(4r2 + (W2 - 1)2), (7)
rw) = c/2mo , (8)
W(w) = ag/o, (9)
ax)2 = k/m, (10)

and k is the AM-PED spring constant. In the limit that the new LSS/AM-PED modal
frequencies are very near the old frequencies, Qqn, (that is B is small) we find that
percent of critical damping, yn, given for each of the LSS modes is

Yn = -Imag{B Qong(L0n)x/(M"1 9F 5(Qon,x)/00> )}. (1)

Assuming the TMT can be modeled as continuous cantilevered beam and the AM-
PED is mounted on its free end, Fg5 can be analytically defined and the operations
required by equation 11 performed. The result is
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Yn= {2B}2r(Qon) 1[4r(Qon)2 + (W(Qon)? - 1)2 ] = 2Bdn, (12)

where reference is to be made to equations 8 and 9. Assuming the mass m is fixed at
the value of the active damping actuator, we can choose the AM-PED parameters ¢c/m

and wpto either maximize the damping for a particular mode or damp more than one
mode. We also note that if the LSS were a one dimensional system of mass M, the
factar in curly brackets would be 1/4 of the equation 12 result. This means, at least in
the limit of small frequency changes, that the effective mass of the cantilevered beam
is 1/4 of its actual mass, for all modes when an AM-PED is attached to its free end.

The active damper is effective for both the first and second bending modes (Qgo

and g1) respectively sc we design the AM-PED to compete with it and also damp the
first and second bending modes. We are interested in obtaining the best damping we
can for the lowest mode and still obtain reasonable damping for the higher modes. As

the detailed analysis shows, for a given r and Qg in equation 12 the numerator can
be minimized by choosing

W(CQ00) = 1, or wo = Q0o.

The damping of Qg is then maximized with the choice

c/m = Q. (13)

As discussed in Section 2 this ¢/m ratio is easily achievable with the magnetic system.
The choice of AM-PED parameters defined by equations 12 and 13 imply that for Qqn

>> Qoo
Yn = Y0{€200/Q0n], (14)

when

Yo = 2. (15)

The TMT active damper predictions ~ere actually made with two 4 Ib dampers
at the free end angd two additional 4 ib dampers, one at the center and one one-quarter
of the length from the free end. A worst case comparison is made by using only one 8
ib. AM-PED (equivalent to two 4 Ib dampers) at the free end. Since the TMT is 220 Ibs

and the ratio of Qpo/Q01 = 4.74, as stated above, we find for the TMT that

Y0~ 2x8/220 = 7.3%, and Yy = 7.3% /4.74 = 1.5%. (16)

Table t shows the TMT active damper predictions as a function of four velocity feed
back schemes. The AM-PED is therefore expected to be very compaetitive with active
damping systems. in Section 4 we will see that there is reason to suspect that the AM-
PED may, in some circumstances, be a better damper than the active system. (The
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overall damping ratio with an 8 Ib AM-PED is 11% for the computer simulated TMT,
50% greater than the analytic, continuous beam result.)

Table 1 TMT Active Vibration Control
(From Reference 2, x Bending)

Closed-Loop Modal Damping Predictions

LQG,LTR .
; MEOP Overlapping | Component
OPeMLOoP | e adback Decomp | Synthesis
1st Bending .80 9.36 4.49 8.02 7.24
2nd Bending .16 1.45 1.38 3.19 2.97

One can also estimate the TMT modal damping by using a one dimensional
analog. For driven, single degree of freedom system the damping is (2T)-1, where T is
the transmissibility. Using this relationship, where the cantilever is base driven, we
obtain, 6.6% damping for the first mode and 1.4% damping for the second. These
numbers are consistent with the results in equations 16. But again, we have here used
a continuous beam model for the TMT and differences are expected for the real
structure.

3.2. STRUT-PED (S-PED) CONFIGURATION

A S-PED would be used very much like VEM damper struts used in LSS truss
structures. For example, experiments were performed with the TMT using VEM
diagonal strut dampers (Reference 2 and 3) in all bays (see Figure 2). The resulting
damping was 4.2% for the first bending mode and 7.0 % for the second bending mode
but the weight of the TMT was increased by more than 100 Ibs (45 kg). It is clear that
the struts could be removed from those bays experiencing the lowest modal strain
energy and the damper weight would be reduced. However, the damping would be
reduced somewhat as well. The TMT with strut dampers in all bays probably
represents the maximum TMT damping possible with VEM.

A rough comparison of what is possible with a S-PED can be made by
employing two diagonal S-PEDs in the first TMT bay (see Figure 2) and choosing a ¢
to maximize damping for the first mode. A transmissibility analysis is then used to
evaluate the damping for the second mode. The detailed analysis indicates that under
these circumstances the strut dampers operate very much like the Isolator-PED of
Reference 13. The Reference 13 analysis showed that the damping of the first
cantilever mode was maximized at about 30% when

c/m = 1.5 Q. (17)

This equation is very similar to the AM-PED design equation (equation 13) except that
in the case of equation 17 the mass is the effective mass of the TMT in its first mode
and not the mass of the AM-PED. As discussed in Section 3.1 the effective mass of the
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TMT is 1/4 the total mass or 55 Ibs (25 kg). We saw that about 7% damping was
expected with two 4 Ib AM-PED masses, larger masses producing greater damping. In
the S-PED design the moving mass is the system itself. The larger mass implies
greater damping.

(" VEM STRUTS )

VEM

Twelve
Meter Truss

Aluminium Tube

\_ y

Figure 2. Twelve-Meter-Truss, Damper Strut Configurations.

The ¢ that we need in order to obtain this large damping is given by inserting
the correct parameters into equation 17. We need

c=25x1.5x2nx 2.25 = 530 kg/sec, (18)

or if two struts are used per bay ¢ = 265 kg/sec for each strut. For a particular design
we can achieve the required ¢ with a total magnet mass of 2.1 kg (4.6 Ibs). With this S-
PED system the expected damping, predicted from a base driven transmissibility
analysis of a continuous cantilever beam, is 19% for the first bending mode and 2.5%
for the second bending mode. We have tuned the S-PED system for the first bending
mode and it is most effective for that mode. The 19% damping of the first mode differs
from the 30% expected from the single degree of freedom Reference 13 analog, but
given the difference in the approximation methods numerical differences are expected.
In addition, experience with comparing the AM-PED, continuous beam, analytic
results with the TMT computer simulations suggests that the analytic damping
estimates are a conservative lower bound.

It is difficult to directly compare the analytical S-PED analysis with the TMT VEM
damping data. Theoretically, with a factor of 22 less weight (excluding the weight of the
struts and armature) we have a factor of 4.5 more damping in the first bending mode.
This seems to be a definite advantage. The S-PED damping in the second mode is,
however, about a factor of 3 less than the VEM system. It is clear that by detuning the
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S-PED the second mode damping could be increased at the expense of the irsi moar,
if that were desirable. Although the analysis has not been performed, the <. jectalion
is that the S-PED would be superior to the VEM damping strut system. C%m ; :
VEM system with en S-PED wculd have a number of advantages: (1 {f.zre .
no outgassing problems, (2) designing a damping treatment would t2 sirne 7 sirns
the PED system is linear with respect to amplitude and ¢ does a0t ¢censal
frequency, (3) heating coils would be avoided because the PED sysiem LoTiEAnE
change: .ery little with temperature, (4) the same PED system ccu' Teousegd
anywhere on the LSS because of the near temperature indepencsance of the ~tin

4.0 STRUCTURAL DYNAMICS

in Section 1, it was noted that the AFWAL 12m Truss {(TMT) < a2
represents large space structures of generic interest. To suppress the i
such systems, the application of the PED as an auxdiary mass damper w.
to be very promising. In Section 3, a preiiminarily design AM-PED for the ¢
12m Truss was discussed. It was observed {hat its effectiveness, reliabiiity,
compare tavorably to actively controlled and mecnanical passive
alternatives.

The structural dynamics of the TMT with AM-PED is ncw congiah
analyzed 10 further investigate these prorising possibilities. The meda: anar
considered first to gain insight and then realistic transient excitations are conax
Next, the effect of AM-PED parameters on performance is examined.

4.1 MODAL CHARACTERISTICS

The study begins with the natural frequencies and mode shaones o1 it.e
These were obtained through the ADINA finite element mecoel of Pz
(Reference 1), This describes each of the 16 bays of the TMT with a 2-n.: =
elernent  Compiete restraint against translation and rotaticn is assurn 20 21 ihg
support.  The AM-PED is modeled as a lumped mass connected to the fi=s end
through a g reral element having concentrated damping and s iffnesa‘ 'noal, 33
dugree" ¢i frezdom describe the planar flexural vibration of this sysiem. 7 fok
charaﬂtens,t cs 0f this response were found through a determinant Sa:ar**‘ al E,C"“
T w"’_??mped TMT was first considered without the AP

system.

lengi o aksn (o te 471 in. and the total weight 220 lbs in accorezrts - o i
data. 1* _ Ltiffness parameters of the beam elements are adjusted to maiah oo T
two freguennies measured by the AFWAL. These are given in Table 2 anc olicct &
infience of seoar as wall as flexural deformation. The corresponding shoosc, B,

4 ard 5. nontain one and two lobes in the first and secend modes, f€bp°bf!vf TR
WO L e

o onfigence of the AM-FPED on these (;narac:ensr-s wzf.‘.

thee oo stars of the preliminary design are censigerad wl W3 lorEL a0
ooty v i 30 The AM-PED design couses the snyem to Mw:
coo o oo the andamped fundamental mode of the cantilever, i

frequ o ot weapec appear in Table 2 ang Figure 4, respectively re o
theoe wocie e s o shghtly iowar freque v than the undamped funaamis o
Ccree S x'y se mation in phoisn with the heany oo . '

fre:er s STy anay than the fundame,*» and an auxiian, mass o




opposition to the beam. In both modes, the large amplitude of the auxiliary mass
motion will be effective in dissipating the beam's vibration. Note in Table 2 that the
second flexural frequency of the beam is minimally influenced by the design. Neither
is the corresponding mode shape, Figure 5, in which the auxiliary mass experiences
little displacement.

4.2 TRANSIENT RESPONSE

With the benefit of the foregoing modal insight, the response of the system to a
transient excitation is considered. A uniform, unit, initial velocity of the beam is
specifically chosen. This approximates the excitation of an impulsive maneuver by the
spacecraft from which it would be cantilevered. It may also represents the loading
produced by the fluence of a hostile impulsive laser attack on the platform. The
response to this initial disturbance was caiculated using the ADINA modei through a
direct time integration with a step of 0.010 sec.

The resulting tip deflection for the undamped case is shown in Figure 6. This is
dominated by the fundamental mode at 2.26 Hz. With no dissipative mechanism in the
system, the oscillations continue indefinitely. Such behavior is not consistent with the
precise stability requirements for many space platforms.

Fortunately, the situation improves dramatically in the response with the
preliminary AM-PED design which is superimposed in Figure 6. This response is
initially dominated hv the fundamciital bending modes. However, these are effectively
damped in a few cycles. A least squares fit of the response indicates that it decays with
an exponential envelope corresponding to 6.2% damping. This is almost twice as
large as predicted in Section 3.1 for the continuous beam. (Note that in Section 3.1 we
considered an 8 Ib AM-PED, here the simulation was for a 4 Ib AM-PED. Equations 6
and 12 show that damping is expected to be linearly proportional to AM-PED mass.)

4.3 PARAMETRIC ANALYSIS

The above transient analyses indicate that the preliminary AM-PED design
should be quite effective in suppressing the vibration of large space structures.
Accordingly, the influence of its design parameters on this effectiveness is studied.
Auxiliary mass and frequency tuning is specifically addressed.

To examine the effect of auxiliary mass, this parameter is doubled above the 4
Ib preliminary design. In accordance with the preliminary design procedure, we also
double the stiffness and damping values to maintain the same tuning relative to the
cantilevers fundamental mode. The response with this 8 Ib device is compared to that
previously calculated for the 4 Ib design in Figure 7. With the additional mass, the
vibration is suppressed even more rapidly. The equivalent damping, Table 3, is now
10.9 %. Thus the damping effectiveness increases almost linearly with the size of the
auxiliary mass, as suggested by our first order perturbation analysis.

To examine the influence of AM-PED tuning, the auxiliary mass is returned to
the initial value of 4 Ib. In lieu of the preliminary design of Section 3, an alternative
exists which attempts to limit the response of the primary system over a range of
frequencies in the neighborhcod of its fundamental mode (Reference 14). The
parameters of this "optimal” design for the cantilevered TMT are given in the third row
of Table 3. The response of this system is compared to that previously calculated for
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our preliminary design in Figure 8. The effectiveness of the AM-PED is seen {o be a
function of frequency tuning. For the uniform initial excitation imposed, the "optimal"
design achieves 3.6 % damping and is less effective than the preliminary concest.

TABLE 2 NATURAL MODES OF 12M TRUSS

Beam Character Undamped Frequency Hz AM-PED Frequency, Hz
Fundamental 2.26 1.98

2.56
Second 10.70 16.71

TABLE 3 AM-PED EFFECTIVENESS

12m Truss mg C K Damping
Configuration ib Ib-sec/in Ib/in ratio
Cantilevered 4 0.1464 2.069 0.062
Cantilevered 8 0.2928 4.138 0.109
Cantilevered 4 0.0487 1.577 0.036
Free 2" 0.422* 34.4* 0.048

*Values for each of two AM-PEDs. Free-Free analysis not presented.




Figure 3
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5.0. CONCLUSIONS AND RECOMMENDATIONS

I~ this study the feasibility of Passive Electrodynamic Dampers (PED«<) ‘or Laro2
Snace Stiuctures (LSS) has been investigated. The overall conch ;\or T
preliminary PED designs appear very promising, being competitive and in many ways
supenor to current active damping and passive damping LSS technelogies. The
overall recommendation is that a detziled design and experimental test progiram De
underta 2z io verity the conclusions of the study. The detailed conclusions o! this
study == presented below.

The AM-PED operates by converting LSS vibrational energy tc ih2 kinstic
energy of the magnetic-system mass. This energy is then dissipated through chmic
neating 0 the armature. Mechanical springs are used zs a restoring force 2d the
system is "tuned” toc damp over a range of LSS modal frequencies. Because of the
simple PED force reiaiionship, analytic LSS damping estimates can be made when
anaivhic L35 miodal solutions exist. Computationai solutions are required ror reaiistc
LSS truss struc.ures which only roughly approximate continuous, anaiyticaily-tractable
sysiems.

Besides computationally evaluating the effectiveness of the PEDs it was
consder=a important to compare PED eftectiveness with experimental daia and
pratest pradictions fer other damping systems. The AFWAL 12 Meter Truss (TMT)
expenments vere chosen for comparison. The majority of analyzed TMT data is for the
ow-{requency cantilevered position. The AM-PED, designed according to the analytic
zralysic, and the TMT were ADINA modeled.

Tre conclusions of the study are the following:

{1y The maximum practical LSS ¢/m ratio is about 500 sec™! in mks units.

12y Tre maximum ¢/m ratio dependents on magnetic system size.

3+ The gommant effect which reduces c is the dependence of skin depth ¢on the
friz qu‘w y. PED designs should be independent of frequency below 50 Hz.

4 J damping should be independent of amplitude for expected LSS vibrational
:ma oies.

5% ’_,,z. damping should vary by cnly about £+30% over the full 150°C spece
9r'v;fcr‘. rent tenperature variation.

Ch {’ir,rwm"'-fi *o TMT bending-mode, active-damping predictions, for 2 rougn!y
Bhur. 2 e v : damiping system (8 ibs - actually the total active damping actuaicr
WL f e AM-PED weight), the AM-PED is more effective than aztive
e » U D damping is expected to be about 11%. The largest active daraning
ekt o T 9 4% for the first bending mode. The AM-PED is not only epeniad o
Lews - aoiye Aomping in performance but more reliable and cost effecive. Tos
S TROOIre @ power suppiy, motion Sensors of a coempuisr Sonio!
’.‘;Y"t
A oeoonos ot the AMCPED damper 1s conly s oty decreased (2370 Detow
oy SR fof tha free TMT (analysis not preseited in this paper).
R 0 cwstemn 15 expected to be comparabie or superior ¢ VoM strut
~ performance. should weigh loss and be far superior wils: jorness

Cocutgassing, and calzaiability.
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A METHOD FOR THE MEASUREMENT CF
THE COMPLEX COMPRESSIONA L
MODULUS OF THIS LAYERS

J. D. Rogers!
Sandia National Laboratories

Albuquerque, NM
ABSTRACT

A method has been developed for the dircct measurement of the complex com-
pressional modulus of thin layers at low frequencies. The test method utilizes an
electrodynamic shaker and a special test fixture which maintains the plene strain
state of the thin layer. Preliminary tests have been performed on high damping
materials with good results. An improved version of the test fixture is being de-
signed to improve the infinitely distant boundary condition simula’ .
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THE EYALUATION OF YOUNG'S COMPLEX MODULUS OF
YISCOELASTIC MATERIALS
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explainec by the fact that simpler analytical developmenis andg
experimental r1gs are required.

Yan Oort [1] and Oberst and Frankenfeld [2,3] first studied the
gehaviour of thin fixed-free beams coated with viscoelastic materiais on
one, or poth sides (Van Oort onty). The relationships derived by Van Jort,
pefause of their assumptions, are not used for the investigation ot
wrpration damping materials having a high loss factor. The work Dy Qbersat
and Francenfeld was aimed at vibration damping materials having 4 low
2la50°C modulus B and 2 high 1oss factor | The so-called (berst beam
melnad nas since peen generaliy accepted and 1s now standardized by the
DN 4] and the ASTM (3]

scnwarzl analyzed, 'n a more rigourous manner, vibrations of beam-~
wade up of two viscoeiastic materials (6] He conciuded that Van Oort anc
Coerst ang Frankenfeld theories were simplified versions of his own
appreacn because, 1n their assumptions, they had neglected the effects o
codpting cetween flexural and extensional motions. He aiso pointed out
Tt foroan asymmetric beam made of two materials naving different 10353
ractors, oe feuliar Tibre was moving through the ¢ross-section at o
Tregquerncy twite that of Tateral viorations

~otzoserwin and Lnaar L 071 analysis was developed for a three-iayer
systere o anciudes extrrcicnal and shear type damping treatrients to
prates oo owel L tor peart onotre apecial case of unconstrained Jamiing
Tregtrrent of g Gegm (Zer s tnce ness of thirg layer), RKU egquations siepiity

T0 those meportec oy Ober st ang -rant enfeld
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Nashif (8] developed a metnod using the Qberst upparatis

e
o f
—
o
>

-
\

metal supporting bearn coated on botn sides with equais thicknesses of 2
viscoelastic matertal Bending probiems ai hign -or ow- {emnperaiuie

caused oy the large giference between thermal coefricient of expansion of
viccoelastic matenials and metale were eliminated  Sa70ori=ingly, o

mention to Schwarzi'e (6] neutral fibre movement Conciusion was mass oy

7

Nashif 1o further justify the uce of symrmetric specinens
The ASTM has pubhished 3 "Standara Method for Measuring Vinralion-
Darnping Properties of Materials” [5] which 5 Daseq of 'ne eguztlions

proposed by Oberst and Frankenfeld, Nashif and Ross, Kerwin ars Jnler
Jnfartunately, these methods contain a number of assumplions that prevent
therm from being generally applicable.

- The damping etfects of the supporting materal are negiected,

- Bigenvalues equations are derived without considering ine gflacy

o

amping (added stifiness, phase lag, etc &
The global 1o<s factor s ca:Cuiated with methnas inal wers
developed for ngntly aamped, single decree of freedom Syctem:

half power bandwidth or fogarithmic gecrement

foennmnate therestric 1ons of existing n2inods an annroalh aied
Snthe study of lateral vibretwons of root-esCited Contiicver peains
DrOnosr T Itg an extension of thhowork on camping propesties o0 g
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THEORETICAL ANALYSIS

The use of aroot-excited beam enabies one to use both amplitude anc
phase lag measurements for the characterization of damping. The
visceelastic matertal’s elastic moduius and 10ss factor can be getermined
from experimental measurements, without using any approximations of
assumptiors. This proves valuable particularly for materials having high
iess factors. Symmetric test sections are used so that the neutral fibre i
remaing in the geometric center of the cross-section and that no thermally

induced bending occurs.

y V + (aV/dx) dx

b o
gxl M+ (dM/dx) dx
A

dx

>
X

Figure 1. Free body diagram of differential element
ATres tody diagram oF a Gifferential element of length axof a beam

12 shown in figure | By equating the forces In the Y direction to the

corresponcing nertia force and Uy osumming the moments about the
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element’'s center of gravity, we abtain the standard equaticr of motise for

Euler beams (shear and rotatory inertia effects negiected;

m a2y/dt2 + 92M/dx2 = ( ()

where m 1S the mass per unit iengtn From the Classicar thecry of pure
pending of beams, the bending moment 1S related 1o the iateral motion
through the flexural rigidity term This equation can be acphed o
viscoelastic materials by replacing the stanaard elastic Young's moduius &

ny the complex modulus E*. We then have

S<
2 o

¥ hz\

T ﬁ'{—.‘s‘?— hy
.. L TJ | b hz 4

v

Figure 2: Test beam geomslry and o5t layout
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M=E* | d2y/ax2 (2)
Combining equations (1) and (2) we get
m a2y/ate + (E* 1) ¢dy/ax4 =0 (3

For the beam shown In the test section schematic view (figure 2),

mass. stiffness and inertia properties are

m = p Sy *+ p252 = prbhy + 2pabhy (4)
E* 1 =Eqy(T+iq) Iy + Eo(1+in2) 12 ()
Iy = bhy3/12 (6)
12 = 0N 2ho/2 + bhyhy? + 2bhy3/3 7

wirn the use of the following parameters

H =Nyt (3

Fu=0H + [2H7 « BH2 (9)

equations (35 t¢ 075 give
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12 (py + 2ppH) 82y/8:2 +
M2 {E4(1+ing) + Ky Eo( 1+ing)) 3%y /axd = 0 (10

By separating space and time solutions and by delwun, the ¢

parameter as

gd=__ 12(py* 2poH) @? (11
M2 ((Ey* Kn E) + 1miEy+ KynoBl))

we have
ddY/dx4 - q4Y =0 (12)
For the beam shown in figure 2, the boundary conditions are
Y =Yp dy/dx =0 at x =0,
d2y/dx2 = 0 d3Y/ax3=0 atx=L (13

Cnly the motion at the free end is of interest. It is found by solving
equation (i2) with the above boundary conditions and then putting X=L
Civ:ding by the motion at the driven end gives tne ratio of amplitude AR
and the pnase lag @ between the free and driven ends

AR 9-19 = (0S¥ + (QSD b4 AR
i+ COSY OShW
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where

N2 ((E4+ Ky Ep) + im1Ey+ Kynpbo))

(i9)

Eguation (14) can be transformed into two functions of unknown

parameters e and P by equating the real and tmaginary parts on both sides

of the equation. Once simplified, these two functions are

AR (1 + cose cos P coshe cosh B+ sine sin B sinh e sinh B
~ €05 8 (cos & cosh B+ coshe cos )

-s5in8 (sinesinh P -sinhesinf)] =0

AR {cos e Sin P sinhe cosh B - sine cos B coshe sinh B )
+ 058 (sinesinh f-sinhesinf i

- 51N B (cose& cosh B+ coshacosB) =0

(1)

(17)

These non-linear equations are solved numerically by a Newton-

Raphson scheme [14] Reasonably close starting values (e, fo) are required.

For that purpose, we define the following two parameters

A= 2 (£rr Knk2)
12 (py *+ ZppH)

ang
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B= mZmbizKinoBa) (19}
12w (py + ZpoH)

Eguation (12) then becomes

(A + iwB) 3dY/dx4 - w< Y =0 (20

which 15 identical to equation (10) in Stretla's paper [13]. With the current

symbole, equations (30), (31) and (32) of Strelia become

A= (16w L2) |2 (2N
(16 ag2 - F2)
B=Fl2 (16w 12 1223

ags (16 ag2 - F2)

c=-5473+2 78507 +6 15 AR? (23
1 689 AR2

NTNETE @ 1S A resonant frequency, ap 1S the eigenvalue of the egurvaient
e npmper for a fixed-free beam (agp=1 875, 4294, 7855, etc} ing AR
1 23 previously defined Approximate values for Bz and qp are fourd wir

aquations (18) and (19) These approximations are given by




Eop = 12 (p1* 202H) A - E;

Kn hy? KH

and

no, = 12 (pi.* 20oH) @ B - ik

K N12 Eoy Ku Eoq
We then ¢btain from equation (19)

oo = YR cos (¢/4)

Bo = “¥YR sin (¢/4)
where

R= 12(p1+ 20oH) @wr2 L4

h12 ¥ {(E1+ Ky 50272 + (mEq+ KHnQQEoz)zi

ang

‘- tg_" - xmbi_K\H.DOQE.OQl
\E)* KH EOQ)

(26)

(27)

(28"

These starting values eg and o are now used to iterate to the final

sotution for e and P with the Newton-Raphson method The numerical value

of the cormplex angle ¥ = (e+if) 1S now known. Agatn rearranging equation

{(19), we obtan
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(Ey+ Ky E2) + i(miEy* KymoEp) = 12 (p1 + 2poH) @° L4 (29
h12 (o * i ﬂ)d

The numerical values of elastic modulus Bo and 1css factor mp of the
viscoelastic coating are found by equating the real and imaginary parts on

both sides of equation (29). After simplifications, we have

Ex=12(p1* 2poH) @2 L4 a3+ B9 - 6 alf? - £ (30)
Ky D2 aB+pP - 6 9P - 4P (k¥+PY) | Ku
and
no = 12(pr1* 2p-H) @2 L4 4 of (B°-a2) -mEr (31)

To evaiuate the complex modulus E*o(le) of a non-self-supporting

viscoelastic material, the procedures outlined below must te followed

1-record the following parameters, with appropriate units L. py, hy.
E1.m. p2 and ho,

Z2- evaluate H and Ky with equations (3) and 79),

J- record amphfication AR, phase 1ag 8 resonant frequsency ey and
mode number 50 that Strelia’s approximate method can be used as 2 1737
approxtmation,

1

4- evaluate A, B and F as per eauations (21 (220 ara (270 with

[ORS VL

ADropriate resonant frequency ey and e1genvalue do,
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5= evaluate Egqp and o, With equations (24) and (25);

6- find starting values eg and fo with equations (26), (27) and (28),

7-1terate toward final values e and f;

8- evaluate elastic modulus E2 and loss factor g with equations
(30) and (31).

CONCLUSIONS AND RECOMMENDATIONS

when testing a non-self-supporting material, the support beam can
be manufactured out of a viscoelastic materiai because its own damping
characteristics were carried throughout the derivation of the equations
For self supporting materials that can be shaped as a beam, the equations
defined in this paper are simplified by eliminating all terms contatning 2
as a subscript. The equatfons then become identical as those derived by
Ostiguy and Evan-iwanowski {10]

An experimental setup similar to those used by Ostiguy and Evan-
twanowskil [10] or Strelia [13] 1s recommended. Strella's setup Is
particularly useful because 1t allows quick free length changes to be made
Tne tength/tnickness ratio should rermain greater than S0 so that shear and
inertia effects can be neglected Non-contacting electro-optical or laser
instrumentation should be used for amplitude and phase 1ag measurements
Tests sheuld be done Inside an environmental chamber to evaluate the
effects of temperature, humidity, vacuum, etc Frequency and temperature

effects can be Combined, with the use of a reduced frequency nomogram
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(15, 16], to provide a complete ceccription of damping progertes of 2
material on a single chart

The approach proposed In this pager 27 10ws ané "0 evaluate quitsly
and precisely the Young's compiex moduius of viscoelastic materals
Additional work i3 being done to acapt this method for combler 5hedr
modulus evaluation. The method can be used Tor any materai, withcul any
restriction. 1t 1s fast, accurate and 1ts repeatabihity nas been demionstrated

[10] It brings significant improvements over existing test rmethods
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NOMENCLATURE

etgenvalues for a clamped-free beam
parameters defined by equations (18) and (19)
amplitude ratio of free vs driven end
beam width (m)

elastic modulus, real part of E* (N/m2)
approximate vaiue of £ (N/m¢)
Young's complex modulus (N/m2)
parameter defined inreference [13]
complex shear modulus (N/m2)
thickness (m)

thickness ratio

unit imaqginary number (i2 = - 1)

area moment of inertia (m4)

= 6H » 1 2H2 + 8H3

free length ¢f heam (m)

mass per umt iength (kg/m)

bending mement (Nm)

complex frequency parameter
parameter defined by equation (27)
Crose-section (me)

time <

shear forie (N

station 2.ong beam (m)
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Wr

transverce displacemen: of gearn ()
vibration ampiitude (m)

vibration amghitude a4t Coiven era
vibration amplitude at fee end (m
real and imaginary parts of g
approximate vaiues of o anz f

105¢ factor

approximate valiue of n

anguiar deformation (rac)

phase 1ag between free end driven ents 745,
dens:ty (kg/m3)

Jrad;

Qb

angie defineq by equation (7
comMiiey angie (raq,
circgiar frecuenty of Vit atior irad/c)
reSonanT frecuency (-an/ )

LUOSCTInt for nearn mmate a0
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ROLE OF MORPHOLOGY IN DAMPING
EFFICIENCY

L. H. Sperling’
Lehigh University
Bethlehem, PA

J. J. Fay
Lehigh University
Bethlehem, PA

D. A. Thomas
Leliigh University
Bethlehem, PA

ABSTRACT

The role of multiphase morphology in damping was explored using interpenetrating
polymer networks and late blends. Several polymer combinations were employed
as model materials. The .icluded acrylics and methacrylics, styrenics, polybuta-
diene, and poly(vinyl methyl ether). The loss area, LA, under the E”-temperature
curves was measured on a Rheovibron at 110 Hz. The results were compared to
one-phased statistical copolymers.

Several IPN compositions were found which damp more than expected, based
on the group contribution analysis frrind to hold for homopolymers and one-phased
statistical copolymers. The damping increases are interpreted in terms of phase
continty and stiffness. In general, high tané values would be expected in mor-
phologies where the lower glass transition polvimer forms the continuous phase, and
the |, her glass transition polymer forms the discontinuous phase.
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THE THERMORHEOLOGICALLY COMPLEX
MATERIAL

Konald L. Bagley!
Air Force Institute of Technology
Wright-Patterson Air Force Base, OH

ABSTRACT

An approximate quantum mechanical description of molecular ¢nergy transitions
leads to fractional order time derivative descriptions of linear viscoelastic stress re-
laxation in polymers. The resulting fractional calculus stress-strain constitutive laws
are mathematically compact and suitable tor rheological and engineering analyses.
The mathematical form of the models suggests a modification to the thermorhe-
ologically simple material that enables the description of temperature-dependent
changes to the shape of curves representing a material’s modulus in the transition
region. The fractional calculus models are seen to be extensions of the traditional
exponential models of stress relaxation.

ACCEPTED FOR PUBLICATION IN THE
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METHODS OF REDUCTION OF WIND INDUCED DYNAMIC RESPONSE IN SOLAR
CONCENTRATORS AND OTHER SMALL LIGHTWEIGHT STRUCTURES

. RN . w2 .

Monte A. McGlaun
LaJet Energy Company

ABSTRACT:

Wind tunnel studies indicate that solar concentrator structures with low damping
properties are susceptible to dynamic wind loading characteristic of the earth’s boundary layer.
Solar concentrators are sensitive to deflections in optical systems and can be costly when
required to have minimal deflections. The cost and performance characteristics can be
improved through structural design approaches to reduce dynamic response. This study
evaluates the benefits of various methods to control dynemic response: passive damping,
multiple supports, friction connections, mass alterations, and beam length modifications.

The Modal Strain Energy Method (MSEM) is an efficient analysis toc! for evaluating
overall structural damping on complex structures. Modal strain energies were found using a
finite element analysis structural program. The MSEM was used te analyze the complex
structurc of the Lalet Energy LEC 1900 Solar Concentrator. MSEM methodologies are
described in-depth.

Viscoelastic (passive) damping and bracing were found most efficient «t reducing dynamic
response in the structure. Braces were located to develop large modal strain energies. When
bracing and damping were located to develop high modal strain energy for particular medes,
system loss factors were notably improved. Damping was effective when radial girders were
dynamically involved in the mode shape definition.

Monte A. McGlaun, P.L.
Director of R & D

LaJet Energy Company
3130 Antilley Road
Abilene, TX 79600

(915) HUS-8800




1.0 INTRODUCTION

1.1. PROJECT OBJECTIVE: To apply the modal strain energy method (MSEM) to design
damping and bracing to uchieve greater dynamic stabiltly in a
large solar concentrator dish.

1.2. FUNDING OF STUDY: SBIR Program, DOE Contract No. DE-AC05-87/ER80519
DOE Report No. DOE/ER /80519-1

1.3. BACKGROUND

LaJet Energy has designed, built, tested, and marketed solar concentrators since 1978. In
1983 and with internal dollars and private funding LaJet Energy designed and buily
SOLARPLANT 1, a solar thermal electric-generating power plant at Warner Springs,
California with 700 LEC 460 solar concentrators.
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Figure 1 - Lalet Energy’s DOE Innovative Concentrator Overall Side View
(from the east)

LaJet Energy’s solar concentrator technology 1s licensed to Cummins Power Generation (a
wholly owned subsidiary of Cummins Engine Company) for worldwide sales for electrical
production. Cummins is funding the commercialization of a free-piston Stirling engine - solar
concentrator electrical production system. The project is in the second year of a five year
program.

The structural design used in this study is designated the Large Scale Innovative Concentrator
(IC). Lalet Energy designed the IC under U. S. Department of Energy (DOL) cost-share
agreement (DE-FC04-85 E'T30171).
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The IC accommodates 95 silver polymer film mirrors to reflect 135kwy, through a 20 inch
diameter aperture. Figure 1shows the /C at solar noon and at the vernal or autvmnal equinox.
The struciure is comprised of a stationary support system and a tracking support svstem. The
platform, interface, and cantilever are the stationary structure. The lower mast, pirders, space
frames, mirror facets, tripods, and receiver are the tracking assembly,

The tracking functions are performed under microprocessor control that operates one or both
of the two drive motors to keep the optical axis (global z axis) pointed to the sun. The array
of concave mirrors reflects and focuses the incoming solar radiation intG an opening in the
bottom of the receiver. The receiver can be any device designed to accept concentrated solar
radiation for a purpose such as creating steam, generating clectricity, or high tcmperature
materials processing.

2.0 STRUCTURAL LOADING
2.1. GRAVITY

The LaJet Energy solar concentrator structures have high strength-to-weight ratics; rtherefore,
gravity loading is usually secondary to wind loading. Ice and snow loading in the northern
tier locations may be large and require special design situations (solar devices are mmore fikely
to be located in warmer climates).

2.2. WIND

Wind is characterized as a spectral loading, and the majority of energy imparted occurs at
excitation frequencies up to 30 Hz. Since solar dishes have very large surfuce areas, wind is
the primary loading. Wind forces near the earth have a turbulent boundary layer with
characteristics that depend on the roughness of the surrounding terrain. A model of the
structure under study was tested in the boundary layer wind tunnel 2t Colorado State University
to determine the loads at the main pivots of the tracking array but not the disiributed loads
[19].

2.3. APPLICATIONS

For example free piston Stirling engines are currently being tested on e Lalet Eneruy
Concentreors by Cummins Power Generation. The engine operates an 00 Tz and a 5 mm

amplitude. ihe mass of the associated engine mounting components on the solir oneeniraior
reduce the amplitude by the inverse ratio of the masses. The concentraters have uao exhibited
destructive modes in the region of 60 Hz. Application dynamic loading iy leas ol a design
issue than gravity considerations.

24. SEISMIC

The primary destructive mode of seismic activity is through the apphcation of Luic ! forees.
Since the dish is designed for wind acting as a large lateral load and sinee the dheb g oen
strength-to-weight ratio, seismic loading is abways evaluated by is typically a secondary vacton
of design.




3.0 ANALYTICAL MOPEL DEVELOPMENT
3.1. FINITE ELEMENT ANALYSIS (IMAGES 3D)

IMAGES3D Finite Element Analysis Program is a copyright of Celestial Software, Inc., 125
University Avenue, Berkeley, CA 94710, telephone (415) 420-0300 [13]. The distribution of
the components of the finite element model of the tracking portion of the /C is shown. All
materials used in the As-Designed model were steel. The components of the /C have been
sized, modeled, and constructed as shown in the tables following:

696 node points to describe the geometry

986 beam elements drawn from 20 different cross-sections

290 plate elements to describe the 18 inch diameter, 3/4 inch wall Lower Mast.
Girders 5.56" O.D. x .188" wall
Tripods 8.025" O.D. x .188" wall

a. 1.00"O.D. x.035" wall
b. 1.25"O.D. x .035" wall
c. 1.163"O.D.x .057" wall
d. 1.510"O.D. x .065" wall

Lower Mast 18" O.D. x .75" wall
Simulated Engine Weight 4,400 Ibgat z = 509 inches

Space Frame Beams

Table 1 - Structural & FEM Components for the As-Designed IC
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View at 11am and at the View at solar noon and at the equinox
summer solstice

FIGURE 2 - IMAGES3D Plots of the /C Tracking System

FIGURE 3 - PHOTO OF IC IN THE ORIGINAL CONFIGURATION IN WESTERLY
CONFIGURATIONS
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3.2, MODAL STRAIN ENERGY COMPUTATION

Input Basic Geometry, Material Properties, and Member Properties of the
Structure

Create the Stiffness Matrix

Calculate the Modal Frequencies and Shapes (number of modes is limited to
90 by the program). Computer disk storage capacity and the time necessary for
computation will be the determining factor.

Leavc IMAGES3D. Use an ASCH text editor to split the mode shapes into
files each containing displacements for one mode shape and to permit the
STATIC Module of IMAGES3D to calculate Modal Strain Energies.

Follow the program setup for the force induced Strain Energy Run

Reenter IMAGES3D for each Modal Strain Energy run desired and have the
Element Modal Strain Energies written to files for post analysis.

Import the Element Modal Strain Energies into a high capacity spreadsheet.
Apply material loss factors to each element and multiply times the element
strain energy.

i ]Ik[f;i»r)

COMPUTE THE 0= k= (1)
SYSTEM LOSS b "
FACTOR N
VAU
k=1

TABLE 2 - Modal Strain Energy Analysis Flow Chart

In the following tables, successive derived mode shapes are presented graphically. The center
panel is the undeformed geometry, the left panel subtracts 100 times the modal deflections,
and the right panel adds 100 times the modal deflection. Therefore, a sense of the computer
mode shape animation can be derived from looking left to right. For the As-Built analysis the
material loss factor, 1}, is taken at a very low value of .001 since all materials are metal.

Ao
L _fA—t,




3.3. AS-DESIGNED MODAL ANALYSIS

MODE i

System Loss Factor, > 1,

System Strain Energy, . [\’
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_ ) I N
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. i i
Nl }
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MOBDE 3

-fade 1, 1.348868+08 M. --

MODE 4

~dode 4, 1.581323408 Y.~

| K
) i
VAV
o, A
el P gV v
i [Fave7 4Nt

—Fode 4, 2.50152D-08 M= —

Figure 7 - Undamped Mode Shape 4 of As-Designed I1C
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—Hode 5, 2 294D W —

Figure 8 - Undamped Mode Shape 5 of .1s-Designed 1C

4.0 STRUCTURAL BRACING AND DAMPING

Figures show stiffencrs and dampers for the Girders and Tripods on the Innovative
Concentrator. Two options were analyzed: siufjeners culy and stiffeners with dumpers. A choice
was made based on experience with the /C structure to install stiffeners and dampers sized
as shown in the Table.

Stiffenc 3" O.D. with .086" wall, A=.7854 in2 I=.8345 in4

Viscoelastic Dampers {6" O.D. with A=28.31n2, 1=3.98 in4, thickness=.25" ofn =
LO material, Two 375" stee! plates

Table 3 - Stiffener and Damper Sclections

Young's Modulus, lincar elastic Fo= 10830 K

Weight density o000 Ib,/in?

Poisson’s Ratio Vo= -

Shear Modulus, hinear elastic IR !
| Coelf. of Thermal Expansion o _ Not Ulsed T

Tuble " - Viscoelastic Material Propertic Hsed in FEA




Figure 9 - Stiffening & Damping of Lateral Modes in the Girders
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Figare 10 - Tripod In-Plane & Girder Vertical Stiffeners & Dampers




Figure 11 - Girder Lateral Stiffener Positions

5.0 DAMPED AND STIFFENED RESULTS

The following mode is a typical indication that the damper location was selected correctly to
develop largest strain energies. With the high loss factors of a viscoelastic damper, the loss
product sum for the structure is much larger than for the undamped structure. Note that the
system loss factor is dramatically increased with the addition of a dampers in relatively few
locations.

Con=12




—fode 5, 3 LBI2EDE8 Wa.—

System Loss Factor, ) 1y, 0.16739| Modal Frequency 3.68319
Hz
System Strain Energy) /(" 1.774E+03
System Loss Product, ) 1, U {" 2.970E+02
Element Description
Descending Sort
No. | Strain Energy, up of Compcnent Component | Porticn of
({0 Loss Factors, Component
neU Y)
982 2.20234E+02 1 2.20234E+02 | DAMPER |Girder 3 Outbrd
Active
988 1.56167E+ 02 0.001 1.56167E-01 |BRACES |Girder 3 Outbrd
766 5.80972E + 01 0.001 5.80972E-02 | GIRDER 3 | Top
980 5.07246E + 01 1 5.07246E+01 | DAMPER | Girder 1 Outbrd
Active
773 3.83241E+01 0.001 3.83241E-02 | GIRDER 3 | Bottom
986 3.65928E + 01 0.001 3.65928E-02 [BRACES | Girder I Outbrd
776 3.48538E + 01 0.001 3.48538E-02 | GIRDER 3 | Mid Vert Tie
907 2.92025E+01 0.001 2.92025E-02 |POD 1
906 2.39679E + 01 0.001 2.39679E-02 | POD 1
765 2.21329E+01 0.001 2.21329E-02 | GIRDER 3 [ Top

Figure 12 - MODE SHAPE 5 OF DAMPED AND STIFFENED /IC
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FIGURE 13 - PHOTO OF IC IN THE STIFFENED CONFIGURATION

The modal frequency of a single degree-cof-freedom mass-spring-damper system is
w = (k/m)""?. Therefore, it is to be expected that the addition of bracing to the Innovative
Concentrator structure will raise the modal frequencies. Since hysteretic damping is modeled
as a very low stiffness element within the finite element model, damping should reduce the
modal frequencies below the stiffened only model. The Figure below is a plot of the modal
frequencies for the three cases analyzed and for the first fifteen modes, and shows that the
expected trends in modal frequency occur as expected. The frequencies follow the same
general tendency until Mode 10 where the Tripod excitation dominates the response. In the
stiffened only and damped and stiffened runs, the Tripod members are braced which raises the
resonant frequency.

Modes 1 and 2 are essentially the same for all the structural cases explored. Mode 1 has a
41.7 second period which is accompanied by low excitation energy. Mode 2 is readily observed
on both the LEC 460 and the IC and is a gross rotation about the z-axis (optical axis) of the
dish. The z-rotation results in a widely distributed low stress level.

Dampers on the in-plane Tripod braces did not develop large strain energies for any of the
modes. Coiocguceatly, where the mode shapes involved large modal activity of the Girders,
the system loss factor was high. Conversely, if the Trinoad modal strain energies dominated
the nede shape sunnnary, then the systeni 1ss factor was low.  T'he graph in Figure below
shows the systein loss factor for each Mode. Note that Modes 3, 5, 6, 7, 9, and 10 have large
Girder related modal strain energies and, as a result, have larger system loss factors.
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Modalstrainenergy is developed inall portions of the structure. The Lower Mast was modeled
with plate elements while the balance of the structure was modeled with beam elements. The
strain energy associated with the Lower Mast was lower for all modes but Modes 1 and 2.
Damping would be difficult to apply to the Lower Mast, and its lower inodal strain energy
values indicate that damping the Lower Mast would be marginally effective in increasing the
system loss factor and reducing dynamic response. Therefore, damping was not considered
for the Lower Mast in this study. The Figures below show the total modal strain energy by
mode for both beam and plate elements for each analysis.
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6.0 CONCLUSIONS & OBSERVATIONS

7.0

B

The MSEM is efficient and zasily implemented for complex structures.

The MSEM is an effective means to identify wind induced modal deflections that can
effect the optical stability of solar concentrators.

Bracing to reduce modal deflections was identified by the MSEM was installed on the
structure studied.

As an added benefit, bracing to reduce modal deflections of long slender elements will
provide lateral stability against elastic buckling.

Damping has the potential of improving solar concentrator performance, survivability,
durability, reliability, and cost.
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1.0 INTRODUCTION
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FIGURE 1 - SCHEMATIC OF FOUR-LAYER VISCOELASTIC
CONSTRAINED LAYER DAMPING SYSTEM
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2.0 DERIVATION OF GOVERNING EGUATIONS

The five-iaver sumpiv-supporiec Zeam moce: s depicied o Figure 2.

{0

ASSUMDLIONS 1A TD Carre Tne governinT eQUIIISNS 2T

1. Oniv tending and snear <eformalions 2are considered. [n-plane extensional
strains are assumed to be smail anc neg:ngible.

2. Bending deformations are governec b ciassicai Euler-Bernouili beam theory
[101.

Shear deformations of the base structure and constraining laver |Figure 3) are

(8%

identical. The principal shearing-enerz:- dissipation mechanism occurs in the
viscoelastic damping lavers {layers 2 anc 4) since the shear stiffaesses of these
layers are much lower than those of the other lavers. A
[t is implicitly assumed that the structural anc ccnstraining iavers are made of metaiiic
materiais, whereas the spacing and damping lavers are made of polvmeric compounds.
Additional assumptions required to compiete :ne development arc presented as re-
quired.

The extensional stress (¢) in each layer is g:ven by the following equation:
or = Epex, k=1, ....3 (1)

where £, and ¢, are The Youngs modulus of eiasticity and strain respectiveiv.

The general equation for the extensional forces {F) can be written iz the form:

Fk = Ekékrlk, k=1, .. .o

3

where .4, is the cross sectional area in k' laver.

For the simplified. one-dimensional anaiysis cescribed below the sectionai proper-
ties, namely, centroid location. Zy, and flexura: rigidity. E]. are needed. As shown in
Figure 3. Z4 is defined to be the distance from ::e mid-plane of the structural laver to

the sectional centroid. The strain-displacement relations for the lavers are:
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- H, Hj
¢ =1y - dy)0 = {Hy + 5 )u) = 51
Ay, Hy, , Hy ,
¢ =(Hg = Z4)0' = Hy + Hy = 52wy - Hy = =)0 - St

- —

s = (Hs) = 24)0' — (Hy + Hy ~ H)wy — (Hy + Hy) vy — Hovl

Hy = }(H, + Hy)

Hy = Hy + 3(H, + Ha)

Hy = Hy+ Hy + }(H, + H)

Hgy =Hy+Hy+ H, + 3(H, + H;)

The prime represents differentiation with respect to z.

By substituting the strain equations (3) through (7) into (2) we get the force equa-

tions:

F =X\ Z4¢

. . Hq
Fy = X3 (Ha - Z4)0 - 2y

2

4 [ ! H ] H 1! ]
X3 (Hy — Z4)0' = (H, + %)wl - 35%)

o
H

4,

Fy= Xs|(Hs ~ 22)0' — (Hy = Hy+ Hy)9, ~ (Hy + H,)oh - Hovs)

where

Xg=Eka k=1, ....,5

Applying the requirement for equilibrium of in-plane forces. ie.,

CCR=-1N

- ) 1] H H
Fo= X,|(Ha - 200 - (Hy + Hy+ 500 - (8 + Dy - Hey,

(13)




' l ’l] [N
ey
)

,
1i

and simpiifving produces the equatinn

,
|

- { .X-] - 'X"_’ - -¥3 - ‘X"i

- »X?Hzx ~X3H3 = X Hyy + X5H5,,6'
L d

H, . q - H '
- T(‘Y'z—z—'-%-.x:;(.Hg-‘.'—23)":-."&4(H2'f‘ -3‘7‘—‘2—4) X’s(Hv'T'H3 H4)}l/}l
T H . q .
~ |G S X Hy - ) = X5 (Hy - 2|
-H4{§i*4X’SJU1=O

Equation (15) is rearranged to give:

[Xszx - X3Hay + Xy Hy + X5H51] =

+ {Xl X=Xy X, + Xs} Zy

H, H
*-f:‘.g ";3\H7-r-£{-—-)-*-}: (Hg-r-H;; —1)“"X (H H3-‘-H4)
I‘I /
+ ,1: 3 (Hy - ﬂ) + X5(Hy - } f’_
2 ;¢
v, o
+H4 2‘ » ‘XSJ o

The equilibrium equations for the shear forces () in the X-direction are:

T3 = -—Gzl)l = FDI -‘-F: -'-F3'

T4y = —le.")z = FS' -+ F;
Ty = ~/__ﬂ;4("3 = F.;

(16)




where G, is the shear modulus and vy the angie of deformation in the x** laver (see
Figure 3). The quantities ;. F| znd F. are easily ootained by differentiation of
i [SL I o 3 TP SO al
C\-{udhlull: '\.'.U} \-ILAUUE 1 (l-)
At this point in the derivation it is necessary to assume a sinusoidai mode shape
{(which satisfies the boundary conditions for a simply-supported beam) in order to
determine w;, v; and ¥ consistent with the definition of loss factor presented in [12].

Assuming for simplicity that

w = sinAz (20)
then

o=w = KcosAz (21)

¢ =w' = ~K¥inKz (22)
and

¢" =uw" = ~K3cosKz (23)

Substituting equation (21) into (23) provides

¢" - —quf) (24)

Assuming that vy, ¥; and w3 have the same distribution as w, w,. v, and vy are

related to ¢ by

& = a0 (25)

U2 = @20 (26)
and

Y3 = 3@ (27)

where the a's are coefficients of proportionality. Subsequent differentiations of Equa-
tions (25) through (27) give
Yo W

ay = —

o' - 6';7 (28)

acB-12
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Returning o equation (24} and using the rewations in equations (25) through

equation {17, carn De written as -

Finaily. equaticn (21) can written :n the form:

{rr

Y.L - 7Y L. f T - rr oy
Xt “d) Xl iy Cip = X3l — Zg)) =

; T 2
lr FI’ b i
i1 4 a3 ¢
- M\sf{‘; - .\r4‘,.,_ - :{3 5 ! 7‘
: Z - 1o

Siiiariv. ecuation [18) s written as

L Gyywsy D s - ;e N
AR R Ry R EL L CEE T R Xolda - 24)|3
L P

P . Heo
X, = I, + H,) ‘-.tq(A s~ Hy + ,\“—);g{'

P

,
TS oy v . ~ - g t i

- ,‘;gkf{j e [14) - .‘.4‘-\4‘-!" VTS ); ’/"s
‘ / d ! .

<
( oy " }:‘7 "
- r;&sﬂ4 ""4\4"_’" A
Rearranging equation !33) gives
- T4
—0 g - K 1 : L N
T4V T TTEET RS s - 24000 Nojdy = Hy + Hy) i,
4L L - |
Csr . N
- ?‘l")"“z ~ Ll - TR

)
Vo]

(31)

(32)




Also equation 119} can be written as

~ G{‘o;':‘l .- - \‘. 1 .- r \. 1"
-Gy = = =G - Zg)ion = NS(Hy — Hy = Hyjou
- i<\’5(H3 ~H );z,’v’ - .J\. H4} X (331
Rearranging equation (33) gives
f’ | 4
X5(Hsy - Zd)J =|X5(H, + H + 4,)
T 1Gy :
+ {:{s(Hg + H4)} —-/2,- - ll—,;' - A5H4} 0—; (26}

Thus equations (17), (18), and (19) are replaced by equations (32), (34), and (26;

respectively.
Since the assumption that plane sections remain plane is being used. the bending

moment .M can be reiated to deflection by

Elc' =M (37)
where E7 is the flexural rigidity. The total bending moment is expressed by
3 5
M=y Mg+ F(Hg - Z4) (38)
k=1 k=1
where My, is the bending moment of the &** layer given by
(36)

-‘Wkk = (ﬁ’Eka
Equations (27) and (38) define the flexural rigidity as follows:

El= {E,n 4 Eyiy + E3ly + Ey + Es

+ X128 = XolHyy - Z) + Xa(Hyy = 29)" = No(Hy = 24)* + Xs(Hsy — Z4)7)

X,H H
o (Hay = Z4) + Xs(Hy - Z4)(Hy + )

{Ez[; E3I3 - 5414 '

H
F Xu(Ho = Z2)(Hy + Hy+ 54 + X(Hey = Z)(Fy + Hs + ) 'f;}
, v H:z H, R R
~\E3l; + EJd, + kq(Hn - Z4) ==+~ X (H“ - Zd (H3 =+ —2-) + YS(HH - Z”\H; + Hy) |6—

)
i
l

(401

< L?t

-  H. . .
= (X0 - 2050+ X5(Hy) = Z4)He o~ Eu)

CCB-14
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where:

— -tho

2 = & LAVEeT IensIty L TIASS iy o niie,

N == moce numter: ana

In practice the comuiex moculus is evailuated for a given temperature and an esti-

matec modal frequency. 7, The modal frequency is calculated from fyv and compared

L 2% <erppe = 0.01 (48)

I this condition s nol met. the new estimated frequency is taken as the old calculated
Tequeniy 2L Lhe prozess repeanted

2

system was made by comrparing predictions with those for a degenerate case. This

4

comparison was made by sertinz the four-laver beam system thicknesses for layers

&

ihree and four equai o zero stand-off and viscoelastic layers) in the five-layer program
and thickness for laver two equal to zero (stand-off laver) in the four-layer program.
Precwted cutputs for modal loss factor, modal frequency ratio. RMS response and
peak resonance were compared and found to be identical (See Figures 4 and 5). This

comparnson partiaily vaildates tne Sve-layver equations. but other extensive comparisons

hevond the scope of this study could be made to totally validate them.

2.0 COMPARISCON UF RESPONSE
The undampadrdaraped araolitude ratio for a single-degree-of-freedom system un-

dargomtg sinu o dal excration if

‘ PN

< osewrundamp Tty iy T4

B e et N - SN '_—' i . —_— (49‘
<Y negrdamnyp Ty Ju s u

where m i the weign 2oy o8 the structure. The subscript "u” refers to the un-

damped Dase <troictire 3o e subscript ©d7 the response with damping treatment.

Theroniemoan-cuore unsatude response W s obtained by using the equation
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derived in (13} which is

7?(1;" SRS SRR
i - e - 500
Vorms N . \ — I}
2y2mi it NS
Noting that
- 2 . 2 -
K = mu” =m(2rf)° (51)

The undamped/damped response ratio is given by

Wems/Flwlla  ™Ms 1+ 92

:
, = / , n i ,,J ! 2 p—— . M
Womg/ Flw)ly _mg yLzmg  PTVETTIE G i
fems = = S X e e Xy X ) (92)
214\1-'-r7§j VY Te o Mu

the response with damping treatiment.

In summary the four main governing equations derived are: modal loss factor
equation which results by solving equation (43} and cziculating the respcnse ratio
(46), modal frequency equation (47), peak amplitude equation {49), and RMS response

equation {32).

4.0 PROGRAM DEVELOPMENT AND COMPUTATIONS

An overview of the computer program V3LBD computations scheme is presented
in the Bow diagram shown in Figure 6. The geometry of the base beam. thickness and
mater:- sroperties for each layer. and the viscoelastic dainping parameters are 1nput
variahles Thetollowing quantities are calculated for a specified temperature: frequency
cstimate capproxunate frequency ). temperature shift function. reduced frequency. snear
modiius. and the material damping of the viscoelastic laver. Next, modal damping
ard Jronuency are caiculated. The calculated modal frequency is then ccmpared to the
estitLared frequency using the convergence criterion. If the convergence criterion is not
satisfied. the calculation is iterated for an imiproved value of the frequency estimcie.
Once convergence is achieved. the RMS and peak response values are calculated.

taver damping system analyzed in this renort includes two different vis-

»
;

! P 2 3 - . - 1 .1 I oty g ' ~ . Nety .
Lo for one damping application MWhen v only ane viscoelastic ma-

copinl the etloctiue tonnerature range ot that verial oy e narrower than the re-
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Figure 6 - Flow Diagram for the Five-Layer Model Computer Program
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ared femperature range for an elecive iy design. One wayv of broacening the

remverature range over Which InaNinum damping can be acfieved is to use rmultiple

TISCOHIASIC Inaterials with pReaks (0 G033 IACTOD rQurmiinI at duierent tommnerat

Figure 7). As an example. suppose the temperalure range (Cr Wwiilch the damping ce-

sign nas to opéraie .5 from 0 1o 150Y ¥ Tlsing the anaivsis procegure mnsection 2.0, two
materials are selected: LTIMP anc 3N-4638. The first material has its peak damping
at —23% F (Figure 8) the second at 559 F (Figure 9). Bwy placing the two materials
:n the order shown in Figure 10 the combined effect «ives the Jdesived results over a
broader temperature range than provided by either materizl usel separately.

The order in which the viscoelastic layers are appiled is also 'mportant. Analysis
has cnown that the laver nearest the structure has to have the higher temperature
darnping properues to get a wider range of dammping performance. To illustrate this
concept consider two cases. in the first case, 3M-2€8 wos used as the second laver and
LTIMP as a fourth laver. In the second case these materiais were reversed. [t was
“ound for a loss factor of 7 > 0.1, that the firs: case gave a wider temperature coverage
-20 through 130° F {see Figure 10), while the second case resuited in a more narrow

remperature coverage, -60 through 34° F_ (see Figure 11).

5.0 GRAPHICS
Graphical plotting capability was built 1into the program using DI300C software.
The software allows users to plot the following four curves on the same graph: modal
cvctor cncddad tregqueney s BN resporse ratios g peak resonnnce ratlo, each as a

- - . \ L. . R . -
IUnClicH remmrerature. tisers 2150 nave the option of Eﬂg)Uttll’lg TaC reaaired range ot

remperatures and choosing whether to plot results on the printer or oniy di

DO Lhe screen.

S~y - -~ . ~

A coneral purpose comnputer progrein ol jcar: ceot Tor Pueodaver neam) o to

o
~

cenerate carpes plots for the fve-laver dampin, yster was alsa doveioped (50 The
Srsropart of the prograt: consists of developing carpet plote of rsaximum modal locs
Sactor vabies versus temperature {(Figure 120 The cecond part of the program gen-
erates carpet piots of maximum RMS respon: e ratios versus temperature for Jifferen
comber atrers ot Dnver thcknesses of Viscoeastie S ase o coetraming (HS) lavers (Fie

RO (R P N P . - . ey . .. e . . ; N
LT PN RIS S L I N S P R S P - SR R A S TR A S C R SR 6 DY 2 6
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CARPET PLOT FOR FIVE-LAYER BEAM. MODE |
i CASE
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CARPET PLOT FOR FIVE-LAYER BEAM. MODE 1
Ist CASE
(1} BASE BEAM  ![1=0.055 in. RO1=098 Ib/in3, £20 100408 ps:
L=500 in, Freq= 198 b2
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(3) SPACTR 11320 100 in, R03= 008 1b/ind. G=0200E+06 psi
(4) VW RO= 035 1b/id, LTINP
{5) CONST LAYER R05=098 ib/ind. E=0100E108 ps
1000 -l d o v v e e b s o L
g - el 0048 403 00 10 F:
SEEAN
N —ew
40N !
IS el
\ 3 "
1 N o
1 NG
Z o
=
5z
2 190 3
= ] -
=
; 3
1.0 e B n e e s o e
-30 0 50 100 180 200 250

TEMPERATURE (DEG F)

Figure 13 - carpet Plot for Maximum RMS Ratio
vs. Temperature (Degrces Fahrenheit)
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range.

The carpet plott.ne proarany. UDPOLD o~ an erfective 1ool 1o SIOW 1rends 11 datlipi s
rpetp P o7 .

L

characterisies as a fUunction ol (emperatire 107 paraimeiric changes o the geometry o

spphied javers [t owas demonstrated by conaduenine parametric studies for the five-iaver

svstemn bV varving the thickness of each laver rexcept the base beamy by 20 ' that the

stand-off laver had rhe most significant damping effect on response. decreasing RN~

response by 19.18 7 compared to 0.89 7 for the adhesive-laver. Additional verifications

of VALBD need 1o be done as well as a4 companson of the program on:put with actil

rest dati. The five-laver svstem presented can ve & very etfective tecanique in haping

the designer 1o _elect proper damping treatments (or reducing resenant vibrations.
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TABLE

Parametric

H2 H3 HY 45 £5  YRMSu/XRMSd  TEMP 4

(in.} (in.) {in.) {in.) f{psi) (MAX) (°F.)  CHANGE
0.065 0.10 0.005 0.010  10ES6 24.66 3 BASE
0.006 0.10 0.005 0.010 1OES 24,88 5 0.89
0.005 90.12 0.005 0.010 10E6 29.39 5 19.18
0.005 0.10 0.006 0.010 10E6 24.38 0 1.30
0.005 0.10 0.005 0.012 10Eb 27.352 0 11.60
9.005S 0.10 0.005 0.010 12E86 27.06 0 3,73
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ABSTRACT

The dynamics of a class of struts with one viscous chamber at one end of the
strut 1s developed using formulation and methods consistent with finite element
dynamic analysis of structural system. This technique is developed to enable
consistent and systematic design and analysis of large truss structures passively
damped by viscous struts. Modeling and model reduction methods for accurate
analvsis with a nunimum number of design parameters are developed.  Design
paratneters for opumum damping charactenistic, and the associated dynamic
stiffness and bandwidth characteristics are derived. A design procedure and design

curves to size the struts for system level integration are presented.
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INTRODUCTION

Large flexible structures are charactenzed by many tlexible modes within the disturbance and
control bandwidth. [‘or most precision structures, the performance requirements are very
stringent. However, this class of structures often has very low intrinsic damping, less than 0.1%
equivalent viscous damping ratio!, which results in significant dynamic responses. For truss type
structures, a strut with good stiffness and damping characteristics will significantly cohance the
structural performance.

Struts with viscoelastic matenals have been designed, tested and implemented in demonstration
test articles and structures?. Modal Strain Energy method is often used in the design and analysis
of this type of struts and structures3. The mathematical problem of struts and structures are posed
in a frequency dependent form. Results from this approximate solution technique matched quite
weil with test dara2,

Viscous energy dissipation 1s a well understood damping mechanism. Incorporating a
damping chamber in a strut can provide the necessary damping characteristics. An cffective design
of this type of viscously damped struts has been implemented by Honeywell*. In order to
successfully integrate the viscous struts into a system level design, the dynamics of the struts must
ve totally understood. The same analysis method should be used to study the strut dynamics and
system level dynamics so that the integrated design and analysis can be performed consistently and
wstemaneallyS Also, in order to understand the behavior of the struts as contributing members of
a large structure, the problem must be simplified to a few key design parameters by applying
engineering assumptions. Simplitied design procedure with design curves are presented to
compute the kdy strut design parameters. However, the details of the mechanical design is not the
subject of this paper.

VISCOUS STRUT CONFIGURATION

The viscous strut is a mechanical device comprised of three basic elements: an outer tube, an
inner tube and a small viscous damper. A typical strut configuration is shown in Figure 14. The
damper is placed in series with the inner tube. The outer tube is placed in parallel with the
damper/inner tube. An axial displacement across the strut produces a displacement across the
damper. The damper forces fluid through a small diameter onfice, thereby causing a shear flow in
the fluid. For Newtonian viscous tluids, the fluid shear is actually proportional to the displacement
rate across the damper and thus, a velocity dependent viscous damping force is obtained. Under
quasi-static load, the fluid flows and provxdes no resistance and the outer tube provides the static
stiffness to the strut.  The stiffness of the inner tube is important to impart sufficient
dlsplaeemem/velocny to the damper. The dampmg coefficient of the damper is a function of the
fluid matenial properties and the geometrv of the viscous chamber. Since the strut has other small
components, they will introduce additional flexibility to the strut and degrade the performance. It
is important to account for these tlexible elements accurately.

i , ‘\ , /,/ \_\\\ \‘\ ‘__l\:k i

Figure I Contiguration of Viscously Damped Strut?
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The formulation presented here is applicable to a general class of viscously damped struts
which are axially symmetric with the viscous chambers rigidly attached to one end of the struts.
This considerably simplifies the mathematics and lead to a design model with @ minimum number
of key parameters.

STRUT ANALYTICAL MODEL

A viscous strut 1s a structural component which can be analyzed by standard structural analysis
methods. As such, it can be analyzed using conventional structural analysis iechniques and toois.
For a complex strut design, a finite elemeat model can be developed easily using a combination of
beam, plate, solid and viscous elements. The analysis is guite straight forward except for the
viscous element which is not often used in conventional structural analysis. In general, the
governing differential equation for a strut can be expressed as:

Mi + Ca+ Ku = p g() (1)

The damping matrix has contributions from two sources: the intrinsic material and joint damping,
and damping from the viscous dashpot. The intrinsic damping is insignificant compared with the
contribution from the viscous dashpot and hence ignored. Equation (1) is normally cast in the first
order form for solution:

C M u FK ) u ')J ‘)
[M (’][u] ' 1_1) -M] [J - [0 gl 2)

The strut can be modeled by many structural nodes to provide a general description of its
dynamic behavior in 3 dimensional space. Let one end of the strut be fixed, the displacement
vector of the end node be uy, and the displacement vector at the viscous chamber be u,. Many
other intenor structiral nodes may be needed to model the stiffness distribution in the finite element
model (see Figure 2).

Uy
u;
u = . (3)
UnJ
This> END VISCOUS
FIXED CHAMBER INNER TUBE OUTER TUBE
\ [y, —® FORCE
NODE 2 INTERIOR NODES NODE 1

Figure 2 An Ide .hized Viscous Strut

The lurped mass matnx, damping matnx, and sutfness matrix can be expressed in the following
form:
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Mjp 0 L0 00 ..0 Knkp -2 Ky,
0 My .. 0 0Cn..0 Ky Ky - . Ky

M: . . . . . ,C: . .-..‘K: . L (4)
0 0..Mm_' 00 ..0 Ky K- - Kp

Since there is no applied force at the interior nodes, the force vector is given by:

Pi
0
p = . (5)

0
This finite element model is capable of predicting all the details of the global and local strut
behavior. However, the strut is normally designed to act only as an axial load carrying member
providing strength, stiffness and dampiag to meet the design requirements. The analysis modet i
this form also does not cxplicitly express the relationship between the essential dynamic
characteristics and the key parameters. It should only be used if the detailed local dynamics is
important or as a verification model after the strut parameters are selected by other means.

STRUT MODEL REDUCTION

In order to understand the dynamic characteristics of the strut, the analytical model should be
simplified to a small set of parameters. The reduction of the component level model will also
significantly reduce the complexity of the system level model. For design purpose, only axial
behavior of the struts are considered. Consequently, the analysis model is constrained to have
displacement only in the axial direction. At each node, only the axial degree of freedom and two
rotations are retained. For structural problem, the intemal dynamics is generally not important and
the internal inertial effect is ignored.

There are only two degrees of freedom necessary to characterize the strut: u, - the axial degree
of freedom at the strut end for connectivity and u; - the axial degree of freedom at the dashpot for
damping. The standard static condensation reduces the suffness matrix to a symmetric 2x2 matrix
with only 3 independent terms:

ki k
k:[“ 127:] 6
ky ko (©)

Therefore, any complex viscous strut design can be reduced to only 3 equivalent stiffness
constants. For the same 3 stiffness constants, there can be many designs having the same
condensed characteristics. Since for the class of struts of interest, the dashpot is at the supported
end, the condensed damping matrix is very simple:

B .

As for the mass matrix, normally a simple lumping procedure is sufficient since the inertia
effect of the strut is considered not unportant.
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STRUT DESIGN MODEL

Static condensation of a relauvely complex strut design allows a simple equivalent mechanical
modeling of the strut for understanding its dynamics. Due o the design details, many stru:
configurations also have an additional characteristict that k), = -k,o. This allows a further
simplification such that the abstract 2x2 stiffness matrix of Equation (6) can be represented by an
cquivalent lumped parameter model as shown in Figure 2. A viscously damped strut can now be
represented by 3 frequency independent parameters, k, - the outer spring, k, - the inner spring and
¢ - the dashpot.

k )
I !
AVAV N S
¢ ko
e U (1)

Figure 2 3-Parameter 2 DOFs Viscous Strut Model

The equation of motion of the 3-parameter viscous strut model can be written as:

mu + ¢+ ku = pg(t) (8)
where,
_[m 071 . ki+k, - 2 p
m = [0 0]’ k = [ ks ks . 0 b] - [0] ®

[f the strut1s used to support a ngid mass which 1s include in the mass matrix, the characteristics of
this structural system 1s given by the free vibration problem:

mu + ci +ku = 0 (10)

or, i tae tist order torm®:

¢ m?Y u] l k ] [ ] [ 07

[m ol [u Lo -m 01 (n

For this three parameter model, Equation (11) can be written explicitly as:
0O 0 m o UJ rl\] +ky-ks 00 Ul—i [()7
{() oo ‘) ' ts ko ks OO up g :
. , l [ (128

lm 0 ()[ U, ‘) 0 -m 0 ()

o0 0 HJ s 0 0 0l uu
The cigenvalur problem o theretore given py:

i [() () H]W ’kl+k3 "\w () | }

-? }H ; () L () ;‘ + k: l)\) ” | - \,/‘ - fi (l:b)

| im0 gl () 0 m| |




The eigenvalues, A;, and eigenvectors. y,, are generally complex. For a lightly damped
system, there is one pair of complex eigenvalues which represent the under-damped modes and
one real eigenvalue which represents the over-damped mode. Eigensolvers used in structural
codes normally assume the structures to be lightly damped and solve for complex pairs only.
However, solving the eigenvalue problem does not give any physical insight into the design of
struts. Therefore, a simpler design approach is more appropnate.

APPROXIMATE ANALYSIS OF DAMPED STRUTS

When a strut is functioning as a member of a large structure or as an individual member under a
harmonic force given by:

g(1) = el (13)

the steady state solution takes the form:

u = [3;] it (14)

Assuming tthat he mass at the internal degree of freedom, u», is small, and the internal dynamics of
the strut is not important to the problem, the governing differential equation is given by:

0 ]-o2 [§ ol =io [§ 20 1[0 - [B] (1s)

The equations of motion are described by frequency independent coefficient matrices. The internal
degree of freedom, u,, is not subject to any external force. Again, the static condensation

technique is used to reduce the internal degree of freedom by considering the second equation of
Equation (15):

'k: u, + (k2+l(l)C) Uy = 0 (168)
k
uy = —=&— uy, (l6b)
ky+iwe

Therefore, the effective strut dynamics is given by:

k 2
(-mzm ; <kl+k2>-—%—-—)ul - p (172)
k2+l(1)C

The term in parenthesis is the strut dynamic impedance which is frequency dependent. However it
is more useful to describe the strut in terms of complex stiffness (i.e., k(w) = kRw) + ikl(w) ):

(-o2m + kR + ik, = p (17b)
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where,

ka2 + (kytko)(cw)?

R .
k kzz + (co)? (18a)
k,2
Wl = ,__;ﬂ_ (18b)
k,2 + (cw)?

The complex stiffness can further be expressed in a different form in terms of the real part of the
stiffness and the loss factor as:

k = kR (1+in) (19a)
where,
2 (e
. ko (c) (19b)

kko® + (kp ko) (cw)?

These relationships can be presented in a more useful form for design purposes in terms of
normalized parameters. Define the stiffness ratio as:

K = 2 (20a)

the strut frequency constant as:

k
)
W, = o (20b)
and the normalized excitation frequency as:
)]
B =— (20c¢)
U)C
Rewrtte the s trut real suffness and loss factorin tenns of the normalized ratios:
kR [k2+ (1+x)p2 21a)
oD Hielld ol 21a
k| ‘L BZ + K2
K23
n-= - > 21b)

nt+ (14K

In this normalized form, useful design curves can be generated to aid damping design. The
damping and frequency relationships of a few selected stiffness ratios are shown in Figure 4. The
loss factor has a slope of one and negative one ot the low and high frequency range on the log-log
scale and has a distinct maximum at the mid frc quency range. The damping loss factor increases
with the stiffness ratio.
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Figure 4 Normalized Design Curves
For design purposes, it is important to understand the frequency and damping charactenisucs ot
the damped strut in terms of an equivalent single degree of freedom (SDOF) system.  This

approximation bypasses the eigenvalue problem of Equation (12). An equivalent SDOF system is
shown in Figure 5. The equation of motion of this system subject to steady state force is given by:

(-0?m + k +ioc)u = p (22)

o u)

m L 1)

C

Figure 5 Equivalent Single Degree of Freedom System

Comparing Equation (22) to Equation (17), for lightly damped systems, say 2 - 0.2, the
equivalent natural frequency of the damped strut system can be approximated by:

A /k"(m)
(ooq = m (

The equivalent viscous damping ratio can be found by equating the energy loss of the strut to that
of an equivalent SDOF viscous system. The energy dissipated per cycle of the strut as described
by Equation (19) under a harmonic force is given by’:

r9
s

D =7t'quu12 (24

n

The damping of an equivalent SDOF viscous system is given by:

rJ
‘N

» 2
De = m&q(2mu,) W u-
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Equating the energy dissipation at resonance, © = 0!

4 - nff‘?(.“l)
>y T

OPTIMUM STRUT BEHAVIOR

(200

For a given a design, ie. k|, k, and c, the strut dynamic stiffness and damping can be
computed using Equations (212) and (21b). A typical plot of the stiffness and loss factor of a strut

1s shown in Figure 6.

Figure 6 Typical Viscous Strut Stiffness and Loss Factor vs. Frequency
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For design purposes, it is important to find the optimum performance region of the strut so that
the strut can be designed to perform effectively, i.e. high damping at the desired frequency range.
The maximum loss factor with respect to frequency can be found by setting the derivation of

Equation (19b) to be zero:

on

=0
Jw

The conditon at which the damping is at maximum is denoted by the subscript op.

K
Nop =
2V 14K
’, -
kR - ili\l k
op T4k 1
K
Wop = 17 OX
+X

Bop = —== = I
op ~ = = < Top
AVEER N
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[t1s impo ant to note that the maxaimum loss factor1s governed by K. the ratio of the inner and
outer suffnesses. A tlexible inner tube 1s not ettecuve in providing torce to the damper o actuivate
energy dissipation. A stff inner tube 1s very desirable for high damping but the strut will also be
heavier. It 1s also important to note that there 1s not much damping at low and high frequency.
The stuffness corresponding to maximum Joss factor 1s at the transition between the static stiffness,
k,. and asymptouc stiffness, k,+k,. The frequency at which the maximum loss occurs is

proportional to the damper non-dimensional frequency, w.. As a matter of fact, the normalized
optimum frequency is twice the maximum loss factor. Using these relationships, frequency
independent parameters can be computed easily to match the key points of test data in order to
characterize the dynamic behavior. Companisons between analytical and test data were excellent.

These relationships can easily be used to size the key strut parameters. For a desired level of
damping, N,, use Equation (28a) to find the required stiffness ratio, x,.

K= 2M2+21, VN2 + | (29)

Then use Equation (28¢) to compute the damping coetficient. ¢,. required to locate the frequency,

w,, where the maximum damping 1s required.

k
R S5 (30)

STRUT BANDWIDTH

Another important performance parameter 1s the bandwidth of the strut over which there is
significant amount of damping. The effective bandwidth can influence the design of struts for a
large structure with a wide range of natural frequencies.

The bandwidth of the strut can be defined as the frequency range over which the strut has a

damping efficiency v

M
Nop

1= (3D

The bandwidth can be found by solving Equation (21b). For a given damping efficiency, there are
two frequency points:

Y I
K 1+tN1-y-
Bio=_ ~ == (32)
1 Y1+
The corresponding normalized trequency bandwidth is given by
2\ 1 -y
SB = _V ' (33)

y‘\/lH\‘
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The actual frequency bandwidth is given by:

2KV 1 - y° Ky
Wi €

The damping bandwidth is shown graphically in Figure 7. vhe damping within the bandwidth 1<
guaranteed to be higher then the specified efticiercy. The bandwidth concept can be used for many
other design reasons. The recipiicol of damping efficiency can be interpreted as a safety factor for
damping design. The bandwidth can be used to cover the uncertainty in the natural frequencies of
a large structure.

Aw = (34)

=
]
b

" ] PN

! i &l =

: : 0y — q

H ¢ =] =

/ E \ [ S

N { Vi I .
T1={T'|op : ! [
. i/ pSHIN

Figure 7 Strut Damping Baidwidth

DESIGN EXAMPLE

The method developed can be used to size the key parameters of a strut. Only simple algebraic
equations & ~ solved and an eigenvalue problem 1s totally avoided. Suppose a 20-pound weight 1s
supported by a strut. The system is required to have 20 Hertz natural frequency and 5% viscous
damping. By using the design equations, the suut parameters were computed to be: k; = 758.8
Ib/in, k5 = 166.86 1b/in, ¢ = 1.2 Ib-sec/in. The frequency and damping charactenistic of the system
with these parameters were checked with an exact eigensolution. The results compare favorably
and are summarized in Table 1.

Table T Companson of Resuits

Parameters Design Goal Lasensolution Lrror
Frequency 20.0 Hz 20.2 Hz 17
Damping 5% S25% S




CONCLUSION

The dynamics of a class »f viscously -Jamped struts 1s presented. The derivation is based on
the principles of structural dynamics and governing equatons of motion of a finite element model.
This approach is consistent with the system level analysis methods. The use of condensation
technique allows a complex strut design to be reduced to 3 stiffness parameters which are further
reduced to 2 lumped stiffness parameters. Th: dynamics of the struts can be understood through
non-dimensional design variables. Design curves can be used to facilitate component sizing. The
bandwidth charactenistics of the struts provide further insight into the performance of this class of
struts. Results from using this method compared favorably with the exact solution from a complex
cigenvalue problem. Therefore, a 3-parameter model can be used to characterize the performance
of a viscously damped strut for system level design and analysis. The method can be used to
derive component specification to meet system level design requirements>.
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Symbols

C.c,c

NOMENCLATURE

viscous damping matrix or scalar

D = energy dissipation per cycle

g = forcing functon

i = imaginary unit, \/-—1_

K.k.k = stiffness stiffness or scalar

Munm = mass matrix or scalar

p = spatial force vector

u,u = displacement vector and axial displacement degree of freedom
B = non-dimensional forcing frequency

Y = damping efficiency factor

A = change/bandwidth

A = complex eigenvalue

s = complex eigenvectors

n = loss factor

K = stiffness ratio of inner spring to outer spring
g = damping ratio

O = frequency, radian/second

Subscripts

eq = cquivalent

¢ = pertaining to damping

i = for the i-th mode

op = condition at maximum loss factor

r pertaining to the required conditions

Z = penaining to viscous damping

n = pertaining te viscoelastic (hysteretic) damping
Super<-ripts

I = Imaginary

R = Real

T = Matrix transpose
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A Study of a Vibration Absorber to Control the
Vibration of Rectangular Plate
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ABSTRACT

A vibration absorber was studied to control the dynamic
behavior of a rectangular plate. The absorber consists of a
vibration damping composite steel beam and an additive mass.
By evaluating the loss factor and the bending rigidity of
the composite steel beam using the Ross-Kerwin-Ungar model,
the length and the thickness of the composite steel beam and
the additive mass were determined in order to tune the
resonance frequency of the absorber to any resonance
frequency of the rectangular plate. The dynamic behavior of
the rectangular plate with the absorber was measured and
compared with the calculation. The close agreement achieved
suggests that the present method is sufficiently reliable to
predict the dynamic behavior of the vibration absorber
consisting of the vibration damping composite steel beam.

1-5-5 Takatsukadai Nishi-ku Kobe 651-22, Japan
Phone 078-991-5640 Fax 078-991-5605
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INTRODUCTION

A vibration absorber is an effective method to solve
vibration and noise problems in several industrial
structures and machines. The absorber is a passive damping
device to reduce the amplitude of vibration at resonance.
The optimum design met?i? for the single of degree system
was already derived Though ma?¥ %gvestigations of
vibration absorbers have been reported: )= ), there is few
reports to study the absorbers using a vibration damping
composite steel beam as a spring and damping element.

In this paper, we propose a method to design the
absorber consisting of the composite steel beam and an
additive mass. By evaluating the loss factor and the bending
rigid%gy (7?f the beam using the Ross-Kerwin-Ungar
model ’ the thicknesses of the steel and viscoelastic
resin layers and the length of the beam are determined to

tune a resonance frequency and of a vibrating main body to
be damped.

The vibration absorber was designed to control the
first vibration mode of the rectangular aluminum plate using
the above method. The fregquency response curve of inertance
of the plate with the absorber is calculated to be compared
with the experimental results. The close agreement achieved
suggests that this method 1is sufficiently reliable to
predict the dynamic behavior of the absorber consisting of
the composite steel beam.

1. CALCULATION METHOD OF DYNAMIC BEHAVIOR OF THE ABSORBER

1.1 CALCULATION MODEL

The vibration absorber is shown in Fig. 1. It consists
of the vibration damping composite steel beam and the
additive mass placed on the both ends. The beam is
supported at the center and attached to the vibrating main
body ( a rectangular aluminum plate in this paper ) to be
controlled. As the shape of the absorber is symmetric, the
calculation model is assumed to be the cantilever with an
additive mass at the free end as depicted in Fig. 2.

1.2 CALCULATION OF THE DYNAMIC BEHAVIOR OF THE ABSORBER
The vibration damping composite steel beam is
considered to be equivalent to the homogeneous beam with
the structural damping. To incorporate the damping into the
beam, it is necessary to replace a bending rigidity EI of
the beam by a complex bending rigidity EI(1+j7). The complex
bending rigidity EI(l+j"7) can be calculated by using the
Ross-K?gyin-Unqar model( referred to hereafter the RKU
model) Bending wave equation for the vibration absorber
is given by




o2y . 2w

— + + —. =0
pAatz EI(lJU)9x4 (1)
where w,p,A,and I are the displacement in Y-axis, the mass
per unit length , the cross-sectional area , and the area
moment of inertia of the composite steel beam, respectively.

7 is the 1loss factor. The general solution to Eqg.(l) 1is
given by
w=Hexp(jwt) (2)
W=A,exp(-ikex)+A2exp(ikex) +Asexp (-kox) +Asexp(kox) (3)

where W is the amplitude of displacement in Y-axis, Al-A4
are undetermined constants, and Kk, 1is a complex wave
number defined by

2
ke = [ El(plf\ﬂwz)l/z ] ’/‘(a—jB) (4)
a =cos %— tan™' n) (5)
B =sin( %— tan™'7) (6)

The boundary conditions at the clamped end(X=0) and the
free end(X=L) are given by

Clamped end(X=0)} ¥ = ( 7
dy -
dx 0 (8)
F mw W dw
Fr d(x=L) — - = vy ()
se en El(i+in) ~ El(l+jn) ~ dX*
-g—zf— =0 (10)
X
where m is the additive mass and W is the circular
frequency. Substituting Egs.(3)-(6) into Egs.(7)-(10), we
obtain
A= j(cosk,L-sink.L+coshksL~sinhksL)F/D (11)
A.= j(cosksL+sinkoLtcoshksL+ nhkoL)F/D (12»
As= [-sink.L-sinhk.L-j(cosk,L+coshk,L)] F/D (13)

A.= [ sinkoL+tsinhksL-j(cosksL+coshkal) F/D (14)

=3




where

F= Foko/p Aw? (15)

<
1}

4 [1+cosksLcoshksL+ H(cosksLsinhksL-sinksLcoshksl)] (16

H mka/p A

(17)

Substituting Egs.(11)-(17) into Eqg.(2),(3), we can
calculate the amplitude of the displacement. The frequency
response curve of inertance of the absorber is found by
defferentiating the displacement W exp(jwt) twice with
respect to time t and divided by the sinusoida. force FO
exp(jwt) which acts on the free end.

1.3 RKU MODEL OF THE VIBRATION DAMPING COMPOSITE STEEL BEAM

The vibrating Jamping composite steel beam has three
layers as shown in Fig. 3. The complex bending rigidity
EI(1+37 ) of the beam can be calculated by substituting
Young's moduli Ey, Ej and the thicknesses t of the
steel, the complex shear modulus G;+jG, and tée thickness t,
of the viscoelastic layer into Egs.(18)-(20).

The value of G3+jG, used in this calculation is the
reduced data of the modulus over the frequency range 10.0Hz
to 2.0kHz at +24° C obtained from the measured data over the
frequency range O. 03 to 80.0 Hz and the temperature range

-30 to +50° C 9§1ng the temperature-frequency
superp051t10n pr1nc1p1e(
E.bt,* E;bts? titts (18)
[(1+jn)= + +DE,bt, ( — +ta)
El{1+in) 1 17 ) )
titt
D = gEsts ( 1tis ) (19)
Eit:+g(Eit+Ests) 2
_ Gi+jGa E!(lﬂ'r;)] V2 (20)
wEastat, oA

2. OPTIMUM DESIGN OF THE ABSORBER

2.1 DETERMINATION OF THE OPTIMUM DIMENSIONS OF THE BEAM

The vibration absorber is applied to control the first
mode of the rectangular aluminum plate(1000x1000x4mm} in
this section. After measuring the resonance frequency f; and
the equivalent mass M for the plate, The optimum values of

the resonance frequency f, and loss factor( opt of the
absorber can be calculated uglng Egs.(21)-(23) .
u:Zm/M (21)
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1

opt™ 1+ fo (22)
J 7

opt= [(3p/2(14p)] ! (23)

The values of fy and M csg be evaluated by applying the
half-power bandwidth method to the frequency response
curve of 1inertance, measured at the center of the pilate
where the maximum amplitude of the first vibration mode
occurs. The frequency response cur/e measured is shown in
Fig. 4. We obtain f3=24.5Hz, M=2.88 kg, and 7 =0.0171.
Assuming the additive mass m=110g (M =3.82%), we obtain
fopt=23'7HZ' ﬂopt=0.235.

To achieve these values, the frequency response curve
of 1inertance for several dimensions of the absorber were
calculated. The resonance frequency f and the loss factor
7 of the absorber were estimated oy applying the half-power
bandwidth method to the frequency response curve of
inertance <calculated by using Egs.{(3)-(20). The calculation
of the fregquency response curves of inertance was carried
out for the cases of t2=30,50,70,1001pm and L=90,100,110,120
mm under the condition that the both of t; and t3 are fixed
at l.emm. The calculated results for t —7&# L 100,110,120
mm are shown in Fig. 5. The optimum values of t dnd L are
determined by choosing their optimum combination so that the
calculated results of f and 7% equal f pt and
respectively. The relation between f and 7 o? the absorg
for each values of ts and L is shown in Fig. 6. This shows
that f=24.9Hz , %45 can be achieved by setting t2=7qu,
L=110mm.

2.2 CALCULATION OF THE REDUCTION OF VIBRATION AMPLITUDE

The frequency response curve of inertance of the
rectangular aluminum plate with the absorber can be
calculated from the values of the eguivalent mass M , the
spri-y constant K , and the loss factor 7 of the first
vibration mode of the plate and that of the absorber as
shown in Table 1.

The calculated results of the frequency response curve
are shown in Fig. 7. The solid line renresents a calculated
res 1t without the absorber. The dashcd line represents a
calculated one with the absorber setting t2=7OFm. The broken
linQ represents a calculated one with the a2osorber setting

°30 pm. The former 1is tuned to the optimum value, and it
reduces the vibration amplituds by about 20 dB. On the other
hand, the 1loss factor of the latter is about half of the
optimum value, and it causes 3 dB inferiority in the
reduction in the wvibration amplii-uie 2f the absorber.




3. COMPARISON OF CALCULATIONS WITH EXPERIMENT

3.1 THE INERTANCE TRANSFER FUNCTION

The measuring system of the dynamic behavior of the
absorber 1is shown in Fig. 8 ( the temperature of the
thermostatic oven is set at +24°C). An absorber is made to
realize the optimum dimension and the frequency response
curve of inertance of the absorber is measured. The result
is shown in Fig. 9. The values of the equivalent mass m, the
spring constant k, and the loss factor N of the absorber
can be obtained from the measured frequency response curve,
and compared with the calculated result as shown in Table 2.
These results show the close agreement, and it can be
concluded that the present method is sufficiently accurate
to predict the dynamic behavior of the absorber.

3.2 THE EFFECT OF THE VIBRATION ABSORBER

Figure 10 shows the frequency response curve of
inertance at a center of the aluminum plate with the
absorber. The solid line represents the calculated result
and the broken line represents the measured result. The
close agreement of the measured and calculated results
suggests that the present method is sufficiently reliable to
predict the reduction 1in the vibration amplitude at
resonance.

CONCLUSION ,

In this paper, the effective method to design the
vibration absorber wusing the vibration damping composite
steel beam was proposed to tune the resonance frequency and
the loss factor of the absorber to the optimum value. The
following results were obtained;

(1) We proposed a method to design the vibration absorber
consisting of ¢t*- -~~~>~site steel! “eam and the additive
mass. The optimum values of the thicknesses of the steel
and viscoelastic layers and the length of the beam can be
determined by using this method.

(2) The dynamic behavior of the rectangular aluminum plate
with the absorber can be predicted with a practical accuracy
by using this method.

(3) The remarkable reduction of 25dB in the amplitude of

vibration can be achieved by applying the absorber to the
rectangular aluminum plate.
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Table.1 M.X. n of Aluminum Plate & Vibration Absorber

M kg K N/m n
Ist Mode of P ate 2.88 ) 6.90x10* [ 0.0171
Absorber| t.=70u m .109 ] 2.56x10* | 0.2450
ta=30pu .108 ] 2.54x10* | 0.1204

Table.2 Comparison of Calculated & Measured
Values of m, k. n of Absorber

r kg k N/a n

Calculated | 1.09x107! 2.56x10°* 0.2450

Measured 1.12x10"! 2.74x10°* 0.2521
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IMPEDANCE MATCHED MASS-DAMPERS:A NEW
APPROACH FOR IMPROVING STRUCTURAL
DAMPING

Craig Gardner, General Electric-Power Generation'
Richard H. Lyon, MIT

ABSTRACT

Statistical Energy Analysis (SEA) techniques are used to analytically determine the damping
effect achieved by attaching a quantity of mass-dampers to a damped flat plate. Mass-dampers
are defined as SDOF oscillators which are over damped and have a resonant frequency below
the frequency range of interest. The analysis has shown that the damping effect achieved by this
approach is maximized when damper impedance is matched to a particular ratio of the average
drive point impedance of thc plate. The analysis indicates that the damping effect achieved is
significant for mass-damper mass to plate mass ratios as low as 0.05 to 0.2.

A prototype mass-damper system was designed and tested to verify the analytical results. The
experimental results showed that significant improvements in damping were achieved and that
the amplitude of modal frequencies were reduced by as much as 10-15 dB over a wide frequency
range.

This approach differs from visco-elastic techniques in that it does not share strain energy with

base structure. This characteristic may make this approach effective for damping stiff structures
at low frequencies.

"'1100 Western A ., Lynn MA 01910, MS:GPNNR7, Tel.(617) 594-6241
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1.0 INTRODUCTION

The low frequency damping characteristics of many structures are critical to their performance.
Among such structures are submarines, which must have low structureborne noise levels to
remain undetected and tall buildings which need to minimize wind induced and seismic
vibrations for comfort and safety considerations. Other applications may include reducing low
frequency vibrations in aircraft and automobiles to improve passenger comfort.

Designing and implementing structural damping systems which perform well on stiff structures
at low frequencies is a challenging task. Visco-elastic materials are often used in the design of
such damping systems. In order for such designs to be effective, they must share a significant
portion of the dynamic strain energy. This requirement can at times be difficult to obtain in
practice.

Because of this difficulty, a damping system which did not rely on sharing strain energy with
the base structure might have an advantage. Such a system would ideally function over a broad
frequency range and not be tuned to a particular resonance of the base structure as is the case
with tuned absorbers.

Our approach began by analyzing the effect of adding a quantity of masses and a dashpots
combined in series on plate dynamics. Figure 1 shows a plate with 6 Mass-Dampers. It was felt
that impedance matching of the Mass-Dampers to the plate could result in dissipating a
significant amount of power and therefore increase the damping of the plate.

<l

Figure 1 Piate with 6 Mass-Dampers.

Statistical Energy Analysis (SEA) techniques were used to analyze the effectiveness of these
Impedance Matched Mass-Dampers. A prototype system of Mass-Dampers was designed based
on squeeze film damping principles. The effectiveness of these dampers was experimentally
verified and compared with analytical predictions.
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2.0 SEA ANALYSIS OF A PLATE WITH MASS-DAMPERS

2\
<Il S

<Vp >

Figure 2 Rectangular plate with mean-square input force </,?>, average m.s. velocity <v,’>,
drive point conductance G,, loss factor 7,, and mass M,.

Lyon' has shown that for the plate shown on Fig. 2 the power input to the plate and dissipated
by the plate are equal and therefore the average mean-square transfer function TF is given by

eq. (1).
) _
> S 1)
<112> “”'I,,M,

where:

<v:>= average mean square plate velocity
<[l2 >= average mean square input force
G, = average plate drive point conductance= Real part of plate mobility
wn, M= - cffective plate resistance

n,M, = puate foss factor and mass respectively

Note that the basic form for the plate TF is a ratio of the plate conductance to the plate
resistance, Rp.

We expand on this concept to derive an expression for the plate TF with mass-dampers. Fig. 3
shows the system which we will analyze, a plate with two Mass-Dampers. The mass-dampers
shown on Fig. 3 are basically SDOF systems that have the same components as a tuned damped
absorber.

Our aj roach to using these elements will be different from the tuned damped absorber approach
in two important aspects. First, these mass-dampers are designed to improve structural damping
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at frequencies well above their undamped natural frequency by using an impedance matching
approach. Tuned absorbers are frequency tuned to add damping for a particular structural mode.

Second, these mass-dampers are very much overdamped (typical {=1.2) whereas tuned damped
absorbers are typically underdamped. Because they are very much overdamped they could be
accurately modeled as a simple mass and damper combination. The primary purpose of the
spring is to support the static weight of the mass-damper mass.

We derive an equation for the mean square transfer function (TF) <v,?>/<1,*> for this system
where the number of Mass-Dampers, N is 2 but in general N can have any value. From the
expression for the TF we will be able to derive an equation for the effective resistance, R,
resulting from the mass-dampers.

<I: >

cdlﬂ" k <v>

Mpr TTp

Figure 3 Plate with 2 Mass-Dampers.

We make the following assumptions in performing the analysis:

1. Points on the plate move independently, i.e. the attachment points are separated by a
distance greater than half a bending wavelength.

2. The dynamic properties of the plate can be described by average parameters and mean
square response.

3 The addition of passive discrete elements does not significantly affect the average drive
point conductance of the plate, G,.
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We analyze this system by exercising two reciprocal analytical "experiments”. In “experiment
1" as shown in Fig. 4 a mean-square force </,”> is applied to the plate and the points on the
plate that attach to the two dampers are "blocked”. Forces <l,;;*> and </,,,*> are applied
such that the mean square velocities, <v,;”> and <v,,°> at these points are zero. We assume
that the system is linear and that locations 11 and 13 are typical and therefore the blocked

forces applied at these points are equal.

Figure 4 “Experiment 1" with input force </,”> and "blecked" forces <1,,,7> and <l,;,*>.

We also assume linearity so, that the "blocked" force, </,7> is proportional to the mean square
plate velocity, <v,”> as shown by eq. (2).

<1bl2> = I"<vp2> (2)

Since the power input to the plate equals the power dissipated,
-1 3)

dissinted

G, @

2 2
<11>Gp=(,) anp(vp“>




where:

<l,?>= mean square input force
G,= Real Part of plate mobility=(8p,xc)™
p,= surface mass density
k= radius of gyration
h= plate thickness
¢,;~ longitudinalwave speed
n,= plate loss factor
M- plate mass
<v,}>= average m.s. plate velocity over space and time

In "experiment 2" we prescribe 2 equal mean-square velocities <v',,*> and <v’,;> as shown
on Figure 5. Relating the prescribed velocities to "blocked" forces from "experiment 1*2, i.e.,
<V> = <> |Y,4]%, we obtain (5).

S N :
<W3> =<y >= prescribed

Figure 5 "Experiment 2" with prescribed velocity inputs.

<lb1“2> Y0 ? 1Y, 2

2
1Yo+ Y

&)

cevu! 25
1 o=V 2=

where:

The mean square plate mobility | ¥;o|? is given by’ as shown in equation (6).
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<v/,;>>= prescribed velocity at plate- damper junction
Y,,= drive point mobility of mass-damper
Y, = drive point mobility of plate

2P 2 2 6)
IYHI = P+06, +03' (
where;

aa;’- input conductance variance -90_'/8M
M= modal overlap=Ilfn [23f
o:'= input susceptance variance =°a;z

_J= frequency (Hz)
&f= average modal spacing

If we assume that the locations of the mass-dampers are typical and therefore the velocities at
the mass-damper plate are the same, then each mass-damper will dissipate the same amount of
power. Furthermore, in order for energy to be conserved the power input to a mass-damper must
equal the power dissipated by it as shown by equation (7).

) _ o2
<V >R g=Cy|v' oV, ™

where:

Ry= G,y [|Y)g)*= & part of mass-damper drive point impedance
G,4= drive point conductince of mass-damper
[¥,4!>= mean square drive point mobility of mass-damper

/ .
v/ .= mass damper mass velocity

C,= damper constant

The power input and dissipated by the plate is given by equation (8).

N<V >R, =w 1, Mp<vi> ®)

By recipro-itv? the ratio of the input force to the blocked forca uf "experiment 1" is equal to the
ratio of the prescribed velocity to the mean square plate velocity of "experiment 2" as shown
by equation (9).

2 12

17 Vi

\‘I

<l

)

<1:1> <v/i>

Substituting equations (2),(4) and (8) in (9) and we get (10,
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1
¥, l?

1

V- (10)

|

Q

4

We can now get an expression for the plate velocity at the mass-damper plate junction, v’} in
terms of the "free" plate velocity, v, by substituting (2), (5) and (8) in equation (10) which yields
(1.

<V,fl> _ |Ylo|2

(11)

<V:> Yo+ Yy, I?

It can be shown* that by considering v,, to be a velocity source applied to the mass-damper
oscillator then the relative velocity across the damper can be defined in terms of the mass-
damper mobilities and the junction velocity as shown by equation (12).

YuYe
10 Ya=Y10 Y Y 3+Y (Y +Y
Y Y )+ Y, Y+ Y )

v (12)

where:

Vo= velocity at plate, mass-damper junction
v,= mass-damper mass velocity

Y = mobility of mass-damper damper

Y,,= mobility of mass-damper spring

Y, ,~ mobility of mass-damper mass

We will now use these results to determine the mean-square transfer mobility for a plate with
N mass-dampers. Since the system is conservative,

ni"P“‘ = Hdm plae ¥ Hdm mass-dampers 13)

The input power is simply the product of the plate drive point conductance and the mean square
input force as shown by eq. (14).

HMpw:(If)_G—p (14)

The power dissipated by the plate is given by eq. (15) and is equal to the effective resistance of
the plate times the mean-square plate velocity.

ndm- plate = @) nPMP<v:> (15)

The power dissipated by the mass-dampers is equal to the product of the number of mass-
dampers,N the damper resistance and the relative mean-square velocity across the damper as
shown by eq.(16).
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1, SNC, v, (16)

. mass - dampers

If we can now combine the results fror eqs. (11)-(16) to solve for the average mean-square
transfer function for a plate with N mass-dampers which is given by eq. (17).

2 —n
<y ‘>
vP — GP

2 ry 2 2 2
<> wn M +NCJ LA L) o an
T “Y10+ uizl"kaycdlVW(Y.@"'ch)Iz_

It can be seen from eq. (17) that the TF for a plate with mass-dampers ha: a similar form to that
for the plate alone eq. (1), i.e. ratio of coufuctance to riristance, the only difference being the
additional term in the denominator of (17) wiiich is the effective resistance cf the mass-dampers.
Consequently, eq.(17) can be written in the for.: shown by eq. (18).
<v’> G,
L (18)
<‘712> .'Qp"TARCﬁ-

where
Rp = manp

‘ 1Y+T) 2 69 S0 (0 £90 O i2

=NC

We define the 7.4 a8 shown in equation (19).

_ Ry (19)
n tﬁ {0 AMP

Several PORTRAN programs were then written to evaluate the expressions derived here. The
resuits dare discussed mthe following scction,

3.0 DI U ESION OF ANALYTICAL RESULTL

We wiil now joob st wome of the trerd, procoted 0 0D ese analvses. More specifically we will

anelyee oo predionad sor continoaony 0w Do e have experimental data.

The plate studied was /8 in. (Imes) thick ale v 2 a0 € 61my wide by 30 in. (.76m) long.
voovisen o e traatment and had an initial

aversge Tosy feior of T ar o fre e s qanee 00 ) 200 e We studied this plate with

0, 10,25 ard ¥ 70 Crare muccatinere

It was  mhiadey coore with g free




The plate weighed approximately 4 kg. and the mass dampers added were from 5 to 20% of the
plate mass. For the 35 mass-damper system we evaluated the effect of varying the damper
constant, C, on system performance. Because we were primarily interested in the 500-2500 Hz
frequency range, the mass-damper natural frequency was set to 40 Hz.

Figure 6 shows the magnitude of the average acceleration/force TF versus the ratio of the mass-
damper resistance, C, to the Real part of the plate impedance, Re{Z,}. These calculations are
for frequencies ranging from 500 to 10,000 Hz.

100

—— 5S00.0 Hz

| 1.0k Hz

“r e 1.5« Hz

L] _m__ + ¢+ + 2.0k Hz
b (N“‘z) x x x 2.5 Hz
ocooo S.0k Hz

: : 10.0x Hz

¥ar 0.00 0.1 1 0 00

Cd/RC{Z’}

Figure 6 TF vs. C/Re{Z,} for plate with 10 mass-dampers evaluated at several frequencies.

It can be seen from Fig. 6 that there is an optimum ratic for which the transfer function response
is minimized and that the optimum value increases with frequency. As one might expect with
either too low or too high an impedance ratio, the reduction in response is minimal.

This makes sense if we take this concept to extremes. For example if C,=0, there would be no
power dissipated by the mass-dampers. On the other hand if C,=oo the damper mass would
essentially be rigidly attached to the plate and hence would only be adding mass, again with no
power dissipation.

It can also be seen from Figure 6 that reduction in the transfer function is most significant at
lower frequencies. This data shows that at 500 Hz the magnitude of the TF is reduced =6dB
when the impedance ratio is optimized. Calculations using eq. (17) showed that if we rigidly
attach 10 mass-dampers (5% plate mass) we would only expect about a 0.2 dB decrease in the
TF at 500 Hz.

Figures 7 and 8 show the TF magnitude vs. impedance ratio for 25 and 35 mass-dampers
respectively. Theses curves show the same trends as the 10 mass-damper case but with a
strenger effect as the number of mass-campers is increased. With 35 mass-dampers the optimum
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impedance ratio reduces the average TF by 10 dB. Tiie optimum impedance ratic does not
change significantly as the number of mass-dampers is inc¢ r»ased

100 S

t
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¢, W 1.5« Hz
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zf- (.V.lcci) M gg‘ !:Z
X 2 X D O o P 4
coc¢ 5.0k Hz
. 0.0k Hp

L e e e et L e e 2

S35 TR o ! 1€ B!
ca/ Re{Z,}
Figure 7 TF vs. Cd/Re{Zp} for platc with 25 mass-dampers evaluated at several frequencies.

— s ey

T
N

/]

/
\\&QT

\\

PRYRYLO
I
N

[ S
o X + & —
"O)\’+a-—‘

Smmr\)—.—-§

S 7L L S RS

Figure 8 TF vs. Cd/Ee{Zp] tor plate with 35 mass-dampers cvaduared at several froauecies.

Figure 9 shows n . as defined by eq. (19) a5 a function of the imnedance ratio for 35 mass-
dampcr' These curves shiow that inss factors greater than © - are achieved from S06-2000 Hz.
It can 2iso be seen from these curves that consideriny +. Taooabrofe xoaxis, there ia a fairly
broad range of impedance ratios for which the v i neacly mavinmeed.

If we choose C, so that the dumping by the r‘;;f-.t; :.’lw;;)«‘" womnvimized at P00 Hz and plis the
TF for the plate with visco- cmtxc maenal Cone, 10, 25 and 35 nass-dampers wa obtain (e
TF curves shown on Figure 10. These curves ‘um resuits simudar to other additive damping

treate  fsn that faige improvemonds are inede oo e o s Losriing Inprovenients

are ma ‘e by addiny more mass-dampers. We f«ho»‘ﬂ nets toes cers that the plate had some
damping to hegin with and that the Improvemont e da e s i e jg v e damners
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further reduces the TF as much as 10 dB at the lower frequencies.
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Figure 10 TFs for damped plate alone and with 10, 25, and 35 mass-dampers.

4.0 MASS-DAMPER DESIGN

Visco-elastic materials were originally considered for a prototype mass-damper system but,
initial calculations showed that a material with a loss factor of at least 100 would be needed for
such a system to work, while present materials have a maximum loss factor ot =1. A fluid film
damper approach was chosen because of the simplicity of the design and the large damping
constants that can be achicved.It can be shown® that the damping resistance for a circular fluid
film damper is governed by eq. (20).
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where:

C,= damper comstant, Nsec/m

p = dynamic viscosity, Nsec/m?
d= damper diameter

e= film thickness

(20

On Figure 11 can be seen a sketch of the prototype masc-damper system. It consists of an
aluminum disk which sc¢rves as both the damper mass and the fluid film damper area. The disk
diameter was 34mm, chosen so that it is less than 1/2 a berding wavelength on the plate at 2500
Hz. The disk is supported by 3 small cylinders of polyurcthane foam whose spring rate was such
that the natural frequency of the system was 40 Hz. The polyurethane "springs" were bonded
to set screws which were used to vary the film thickness, e and hence the damping constant, C,.
A bead of silicone sealant was used to contain the glycerol. Glycerol was chosen as the damping

fluid because of its high dynamic viscosity.

GE Sdicon sead
contnment boom*
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Nlusd Ml duckness, e

“Pooi® of glycerod

d = mass damper diameter

Cross-Sectional View

e T3t o yurethane
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5.0 EXPERIMENTAL APPROACH

The experiments were designed to measure the effect of varying the number of mass-dampers
and their damping constant, C, on the average TF and loss factor, n of the plate. A sketch of
the experimental setup is shown on Figure 13. The plate was supported by foam rubber to
simulate free-free boundary conditions. A 8 channel FFT analyzer was used to measure plate
transfer functions for the locations shown on Figure 14 for the 3 different quantities of mass-
dampers tested. Average TFs were calculated by averaging the magnitude of the 4 measured
frequency response functions using the GenRad signal processing language TSL2. A frequency
resolution of 0.25 Hz was used for all measurements. The average loss factor was measured for
4 frequency bands using the integrated impuise technique®.

6.0 EXPERIMENTAL RESULTS

6.1 EVALUATION OF MASS LOADING EFFECT OF MASS-DAMPERS ON PLATE
VIBRATION

Figure 12 shows a comparnison of the average TF of the plate with 10 mass-dampers and the
average TF of the plate at the mass-damper locations. It can be seen from this figure that the

2ep. 3 T“,_A.
: H

f'\ 1?/'”"11@5

- { &) '}'] '

Sy (vrs) ;:J" j« \/
fee 2 Freq. ma " zsse.
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Averzge - alzed viz's arceleration of “free” plate

Figure 12 Com-aaon of the woompe Hree” plate TF with average TF of the plate below the

ARG GAMmprs.

2 corves are gt similar rom thes comnanison we conclude that the n iss-dampers are not
prass oedhing e plare oo acting as oomass damper system as intended.




6.2 EFFECT OF MASS-DAMPERS ON PLATE n AND AVERAGE TF

The analytical data shown in Figure § showed that an impedance ratio of .27 shovld minimize
the TF at 1000 Hz. This is approximately the mid point of the 0-2S04 Hy frequency oand of
interest. On Table 1 can be seen the estimated plaie lose Cuctor, 4 for §, 10, 25 and 35 mass-
dampers tested with the impedance ratio -gaal to 0.3%. it can pe seen from Table 1 that there
is a significant increase in the measured plate loss factor as the number of mass-dampers is
increased. The increase is on the order of 200-500% and is «vident sver frequency span of
almost 2000 Hz. It should be noted that duc to the ificully ¢ mousuring the fluid film
thickness of this softly sprung system, the ‘mpedance ratins ¢ only L censidered approximate.
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Figure 14 Accelerometer, shaker and mass-damper locations.

Table 1: Measured Plate Loss Factor , for N=0,10,25,35
# Mass- Added Impedance Center Fregs. of 320 Hz Wide Bands
Dampers Mass Ratio
N % Cd/Re{Z,)} | 320 Hz 960 Hz 1600 Hz | 2240 Hz
None 0 N/A 0.007 0.0040 0.007 0.008
10 5 0.32 0.009 0.014 0.012 0.011
25 13 0.32 0.012 0.014 0.024 0.026
35 18 0.32 0.015 0.019 0.025 0.035
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Table 2 shows the affect of large changes in the impedance ratio on the plate loss factor for a
fixed quantity of mass-dampers. We would expect lower ratios to provide a larger loss factor
at lower frequencies and higher ratios to provide larger loss factors at higher frequencies. In
general that data on Table 2 show this trend except that we would have expected the largest
impedance ratio to have the best performance in the 2240 Hz band.

Table 2: Measured Plate Loss Factor 5, for N=35 Cd/Re{Zp}=.21,.32,.94
# Mass- Added Impedance Center Freqgs. of 320 Hz Wide Bands
Dampers Mass Ratio

N % Cd/Re{Z,} | 320 Hz 960 Hz i600 Hz | 2240 Hz
35 18 0.21 0.021 0.025 0.026 0.029
35 18 0.32 0.015 0.019 0.025 0.035
35 18 0.94 0.016 0.014 0.015 0.028

Figures 15 and 16 show the average TF for the damped plate alone and the same plate with 35
mass-dampers, over frequency ranges of 10-640 Hz and 640-2540 Hz respectively. It can be
seen from these curves that above 300 Hz the magnitude of the TF is reduced by as rauch as 15
dB.

7.0 COMPARISON ON ANALYTICAL AND EXPERIMENTAL DATA

A comparison of experimental and analytical TFs can be found on Figure 17. It can be from
these curves that the analysis overestimates the TF above 1000 Hz. We also find that although
the experimental and analytical data have the same trend the analysis predicts a larger reduction
in the TF due to the addition of the mass-dampers than was measured experimentally. On
average a 9 dB reduction is predicted while a 6 dB reduction was measured. Recent data
suggests 1' 1t these differences may be influenced in part by mass loading effects of ti:e silicone
bead useu .0 contain the glycerol.
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Figure 15 Comparison of average TF (10-640 Hz) for damped plate alone and damped plate
with 35 mass-dampers, Cy/Re{Z,}=.32 .
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Figure 16 Comparison of average TF (640-2540 Hz) for damped plate alone and damped plate
with 35 mass-dampers, C/Re{Z,}=.32 .
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Figure 17 A Comparison of analytical and experimental average TFs with and withcut 35 mass-
dampers.

8.0 CONCLUSIONS

SEA techniques have been used to predict the effect of impedance matched mass-dampers on the
damping of a rectangular plate. This analysis indicates that piate damping can be significantly
improved using this approach. The analysis also indicates that this method is most effective
below 2500 Hz for the piate evaluated. Analytical work* done to model 3 dimensional structures
as 2 dimensional ones has indicated that this approach can even be effective below 50 Hz. It
appears that theoretically, there is no lower limit to the frequency at which this approach is
effective, although, more mass is required tc get the same effect at lower frequencies and the
damping effect at higher frequencies is lessened.

A prototy; . impedance malched mass-damper system which utilized fivid film camping
principles was built and tested. Experimental data has shown that this approach can significantly
improve the damping of a plate. Because this technique does not share strain enecrgy with the
base structure but, rather lcoks at the base structure as a velecity source, it may prove useful
in damping structures where it is difficult to design a <train en~ gy sharing visco-elastic system.
Such apptlications would typically be the low frequency modes of structures which generally have
lower bending strain energies. Typical applications might De t warine harware to reduce
structurcborne noise levels, in buildings to reduce wir.d and seismically indnced vibrotions and
in automobiles or aircraft to reduce low frequency vibrations and improve passenger ¢omor

A conceptual sketch of one such design is shown on Figure 18. It consists of a housing which
could '« made of aluminum or plastic and a hockey pack Fiped mass whioh is sefly sprung

from thi: housing in 3 orthogonal directions.
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Figure 18 Conceptual sketch of a mass-damper design which provides damping in 3 orthogonal
directions.

DAMPING FLUID

The fluid level and film thickness between the mass and housing are designed such that the
system provides damping in 3 orthogonal directions, independent of its mounting orientation.
This approach is the sutject of a MIT patent application. Many other configurations are possible
but, further work needs to be done to evaluate the design parameters required by particular
appplicatons.
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ANALYTICAL AND EXPERIMENTAL MODAL ANALYSIS OF A TWO-TIERED
STRUCTURE

H. V. Vu, T. K. Vuong, and W. C. Flynn, Jr.
Department of Mechanical Engineering
California State University, Long Beach
Long Beach, CA 90840

Abstract

A test structure, namely a two-tiered structure (TTS), was used as a physical model for obtaining
modal parameters of flexible structures. These parameters, which were determined analytically and
experimentally, are natural frequencies, mode shapes, and damping ratios. In the analytical
portion, finite element method (FEM) was used with MSC/NASTRAN, MSC/pal 2, and
MSC/MOD. In the experimental part, the structure was excited by random noise, and frequency-
response function (FRF) plot and modal parameters were obtained. Both the HP 3565A/3567A
(Hewlett Packard Spectrum/Network Analyzer) and STAR System (Structural Measurement
Systems software) were utilized. An exact model-reduction technique was used to obtain a
complete mathematical model of & reduced-order system, which includes the reduced-order
physical mass, stiffness, and damping matrices.




Introduction

Analytcal and experimental modal analysis can be used to determine dynamic properties or modal
parameters of flexible structures. These modal parameters are natural frequencies, mode shapes,
and damping ratios. The characteristics of flexible structures are low natural frequencies, low
damping, and some of the modes are closely spaced.

In finite element analysis, it is necessary that the structure under consideration is modeled using a
large number of degrees of freedom (DOF's) for accurate resuits. But if the number of DOF's is
large, the results from finite element program become unmanageable for the purpose of design and
analysis of vibration control or for subsequent studies. A model reduction technique [1] can be
used to reduce a large-DOF model to a small-DOF model which exactly represents the first few
modes.

In experimental modal analysis [2-4], also called modal testing, natural frequencies and damping
ratios can be obtained from the frequency response function (FRF) plot. In modal testing it is
important to have high-quality test setup, testing craftsmanship, and data processing, etc.

The equations of motion of a structure can be written in the configuration-space form [S] as
mx+cx +kx=f )

where m, Kk, and ¢ are the physical mass, stiffness, and damping matrices, respectively; and f is
the applied forcing vector.

The physical mass and st*ffness matrices of a structure under consideration can be obtained
analytically by the given physical properties, dimensions, and boundary conditions; however, the
physical damping matrix must be determined experimentally.

A complete mathematical model of a reduced-order system will be determined, which includes the
reduced-order physical mass, stiffness, and damping matrices.

The Test Structure

The test structure, a two-tiered structure (TTS), shown in Fig. 1, is chosen so it can be used for
studying vibration characteristics of flexible structures. It was designed specifically to possess the
following characterisucs:

. low natural frequencies, light damping, and intuitive mode shapes for the first few modes
. inexpensive and easy to build
. instructive for analytical analysis and computer simulation, and experimental modal analysis

Finite Element Model

A finite element model of the structure is created using MSC/MOD (Fig. 2). The floors and the
columns are mudeled by plate elements and bar elements, respectively. The brackets connecting
the plates and columns arc modeled by concentrated mass elements. The model has 136 elements,
146 nodal points and 790 (active) degrees of freedoras (n = 790). It may apnear that the number of
plate elements is more than adequate; however, in this stucly, the modzi 1s reladvely small and
simple so that mesh optimization is ignored.

The finite element model is then analyzed by using two commercially available finite element
analysis packages: MSC/NASTRAN (on main-frame computer), and MSC/MOD and MSC/pal 2
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(on MS-DOS machine) [6]. The undamped natural frequencies obtained, using these packages, are
given in Table 1, and the corresponding mode shapes (from MSC/pal 2) are shown in Figs. 3-8.

Exact Model Reduction
For the undamped free vibration or eigenvalue problem, Eq. (1) reduces to

mx+kx=10 (2)
When the structure vibrates in its natural modes, we have

(k- m)p, =0 r=12,..n 3)

where @, and ¢, are the undamped natural frequencies and the corresponding mode-shape vectors,
respectvely.

The orthogonality properties are mass normalized so that the modal mass and stiffness matrices are
given as

M=d"md=1
T , 2 4)
K=0'kd=diag(w,] r=12,..n
where the full-order (mass-normalized) mode-shape matrix is given as
o=[¢, ¢, .. 4,] o)
The full-order physical mass and stiffness matrices can be written, from Eq. (4). as
m=o TP
; (6)
k= CD"Tdiag[a),‘](I)'1 r=12,...,n

The 790-DOF full-order model (n = 790) is reduced to a 6-DOF reduced-order model (m = 6)
which exac:ly represents the first six modes using [1]. The reduced-order model is obtained by
selecting «. : four translational DOF's located at the centers of the floors for the first four bending
modes. For each of the first two torsional modes, the angular DOF is defined by a set of any two
ranslational DOF's of a given floor. Using the numerical values of the full-order mode-shape
matrix (from MSC/NASTRAN, not shown), the reduced-order mode-shape matrix can be selected
as
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O, =
((4175227) ([ 0 ) [ 0 )} (6274968} { 0 0 )]
0 4.195279 0 0 -6.261847 0
0 J 0 -0.500879 0 0 0.657553
{ r r { > R R T < \
6.724909 0 0 —-4.559574 0 0
0 6.710377 0 0 4.580626 0
Lo g, Lo, lomisrel, Lo f, | 0 ], [-0.561635),]
)
where the subscript R denotes reduced-order model.
The differential equations for undamped free vibration of the reduced-order model are given as
mepX, +kgx; =0 (8)
where
m, =0, D"
T 2 -1 9)
k,=d, dzag[a), ]d)R r=12,...,m
xR={x1 » 16 x y 1'92}T (10)

The numerical value 1 in Eq. (10) has dimension of length so x, is dimensionally homogeneous,
and the subscripts 1 and 2 denote the middle floor and the top flocr, respectively (Fig. 1).

Inroducing @, from Cg. (7) and @, from Table 1 (MSC/NASTRAN) into Eq. (9), we have
[1.7605 0 0 0.0142 0 0
0 1.7604 0 0 0 0.0142 0
0 0 14654 0 0 2.3%53 b2
m, =107 1 1 !
R 0.0142 0 0 1.5149 0 0 in
0 0.0142 ) 0 0 1.5150 X
0 0 ‘..3253 0 0 1 1.277
L 1 1" ] (11)
M 0.0171 0 0 -0.0084 0 0
0 0.0171 R 0%39 0 -0.0085 1 0 q
Ke=10% 00084 0 0 00082 O 0 |7
0 -0.0085 0783 0 0.0083 , 07
0 0 —l.l: 0 0 .192,_1
L 1 |

The numerical value 12 in Eq. (11) has dimension of length squared so the elements of m, and k,
have proper dimensions.
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Modal Testing

The expenimental setup 1s shown in Fig. 9. Continuous random signal and Hanning window were
used to obtain the FRF plot (Fig. 10). This plot includes the first six modes of the structure, of
which the natural frequencies can be read directly. In the process of obtaining the modal damping
ratios, the FRF data was first converted from the HP 3566A/3567A format to the STAR System
format, then curve fitting methods were used. For widely spaced modes, the determination of
damping ratios by curve fitting is straight forward; because in these modes, the structure behaves
as if 1t were single degree of freedom (SDOF). However, for closely spaced modes, the damping
ratios are difficult to obtained with great accuracy. The experimental results for natural frequencies
@, and damping ratios ¢, are given in Table 2.

Physical Damping Matrix
A physical damping matrix can be determined as

¢, =D, diag[2¢,0, | D, r=12,..,m (12)

The modal damping matrix is given as

(C. ), = diag[2¢,00, | = diag[0.4008 0.3314 0.1633 0.9068 0.8671 0.2771]7¢ (13)
A

or
(C,), = diag[2¢,0,] = diag[0.4032  0.3191 0.1184 0.9392 0.8767 0.2205]59E (14)
s
where o 1n Egs. (13) and (14) are the experimental and analytical (MSC/NASTRAN, Table 1)
natural frequencies, respectively.

Introducing Eqs. (7, 13) 1nto Eq. (12), we have

0.0132 0 0 —0.0037 0 0
0 0.0123 0 0 —0.0040 0
0 0 0.3;117 0 0 —().()2683 . ’
e T0.0037 0 0 o084 0 0 . (12)
0 —).0040 0 0 0.0075 0
() 0 ﬂ—g@—ﬁ— 0 0 (')'2%97
1 1
The numerical vadue 74 0n Eq. (13 has dimension of Iongth squared so ¢, is dimensionally

homaosrenceous,
Concluding Remarks
A compliete mathemancal model of the reduced order system has been determined, as given by

m,x, ~c.x,+k.x. -0 (16)




It should be noted that the physical damping matrix can be obtained using the experimeniul
damping ratios and experinental/analytical natural frequencies and mode-shape matrix. If the
physical damping matrix is proportional, the modal damping matrix is diagonal, or if the off-
diagonal elements of the modal damping matrix are negligible, then the physical damping matrix
can be approximated as proportional. Modal analysis can, then, be performed since the cyuations
of motion can be decoupled via orthogonality properties [7].

Table I shows that the results obtained from the finite-element model agree very well with the
experimental results in bending modes but not so well in torsional modes. Some explanation for
these discrepancies is currently being sought.
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Table 1 Comparison of Experimental and Analytical Naiural Frequencies

Mode Experimental MSC/pal 2 MSC/NASTRAN

Number (Hz) (Hz) (% Diff.) (Hz) (7% Ditt.)
1 2.125 2.184 (+2.78) 2.228 (+4.85)
2 2.334 2.225 (-4.76) 2.247 (-3.73)
3 3.938 2.796 (-29.00) 2.854 (-27.53)
4 5.594 5.746 (+2.72) 5.794 (+2.77)
5 5.750 5.789 (+0.63) 5.814 (+1.11)
6 9.188 7.224 (-21.38) 7.311 (-20.43)

Table 2 Experimental Natural Frequencies and Damping Ratios

Mode Frequency Damping Ratio
Number (Hz) (%)
1 2.125 1.44 |
2 2.334 i.13
3 3.938 0.33
4 5.594 1.29
5 5.750 1.20
6 9.188 0.24
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Fig. 4 First y-z bending, 2.225 Hz

Fig. 3 First x-z bending, 2.184 Hz

Fig. 3 First z torsion, 2.796 Hz
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Fig. 8 Second z torsion, 7.224 Hz

Fig. 7 Second y-z bending, §.789 Hz
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DEVELOPMENT OF A MAGNETIC
SUSPENSION SYSTEM FOR RELIABLE
VIBRATION DAMPING MEASUREMENT

Dantam K. Rao?
Mechanical Techrclogy, Inc.
Latham, NY

ABSTRACT

The damping properties of viscoelastic polymeric materials, as measured by dif-
ferent organizations and test techniques, often differ considerably. Sources for the
discrepancy include parasitic energy dissipation at clamped supports of sandwich
beam configurations, as well as imperfect simulation of a perfect clamped end condi-
tion. This uncert:inty can be eliminated by magnetically suspending the test beam
in a free configuration, without mechanical contact for pickup or excitation.

This paper will describe an approach tc develop a proof-of-principle magnetic
suspension system to levitate a typical test beam. The magnetic suspension system

consists of an attraction electromagnet whose stiffness is controlled by closed loop
feedback system.

Controllable stiffness of magnetic suspension will help eliminate measurement

discrepancies attributable to the use of different fixtures by different organizations
to clamp sandwich beams.

FULL PAPER NOT AVAILABLE FOR
PUBLICATION

!Mechancial Technology, Inc., 968 Albany-Shaker Road, Latham, NY 12110, (518) 785-2489
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VEM CHARACTERIZATION PROGRAM

Bryce L. Fowler*
CSA Engineering, Inc.
Palo Alto, California

ABSTRACT

The development and use of an interactive computer program for the characteriza-
tion of complex modulus data is described. The program uses the collocation process
which accurately fits the real part of the complex modulus data and then uses the
lack of fit of the loss factor to adjust the temperature shift function. This iterative
method, which has converged when both the real modulus and the loss factor are
fit simultaneously (the real directly and the loss factor indirectly), yields the most
accurate estimate of the temperature shift function possible.

*C3A Engineering, 560 San Antonio Road, Suite 101, Palo Alto, CA 94306-4682, (415) 494-7351
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1. Introduction

Successful design of passive damping treatments using viscoelastic materials (VEM’s)
such as elastomers depends upon several factors. One important factor is accurate
knowledge of the sensitivity of VEM properties to variations in temperature and fre-
quency. Since it is impossible to test a viscoelastic material at every combination of
temperature and frequency, the material is tested at discrete temperatures and fre-
quencies and a mathematical relationship is developed that characterizes the material
at all other combinations of temperature and frequency. This process is referred to
as characterization.

The equations used in characterization are parametric in nature. They are easily
represented on computers. The difficulty lies in correctly choosing the equation pa-
rameters so that they accurately represent the VEM'’s. Interactive computer graphics

have greatly imprnved the process of choosing and adjusting the correct parametric
values.

This paper describes a recently developed computer program which implements
the Collocation process [1] to accurately characterize viscoelastic materials.

2. VEMINT MAC

VEMINT MAC is a computer program developed to run on Apple Macintosh II
computers. It fully utilizes the Macintosh windowing environment to allow point-
and-click mianipulation of complex modulus data. VEMINT MAC incorporates new
characterization models as well as many of the models used in the past.

Five analytical representations of the teinperature shift function (TSF, or ar) are
available. They are

1. Spline fit of slope

2. WLF equation

3. log(ar) is an exponential

4. d(log(ar))/dT is quadratic in 1/T

5. Arrhenius equation

The “Spline fit of slope” model is discussed later in more detail. VEMINT MAC
also has the capability to use the historical, discretized (tabulated for each experi-
mental temperature) representation of ar.
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= GE SMRD 100B37-128 §

1 IGE SMRD 100B37-128
| : i ;,
Unknown
2 WLF 82
G*: 3 Exponentiai 83
4 Slope quadratic in 1/T %4
Sl Tempe 5 Arrhenius 85 jactor mag Mod Alpha_T Valid Pt
1_| 2999 6 Tabulaled values %6 p-1 17.600e-2 | 2645e-2  FALSE
2 | 2990e+2 ! 2500e+0 ! 2.34Ce-1 4.530e- 1 1.060e-1 2645¢-2 | FALSE
3 {2990e+2 {3.7508+0 :2.590e-1 5.160e-1 1.336e- 1 2.645¢-2 | FALSE
4 | 2.9906+2 |5.0008+0 |2.790s-1 15470e-1 |1526e-1 :2645¢-2 FALSE
S 12990e+2 | 6.250e+0 : 2.970e-) 5.940e-1 1 76de-~] 2.645e-2 | FALSE
6 | 2990e+2 | 7.500e+0 | 3.120e-1 6.090e-1 1.900e- 1 3.055¢-2 | TRUE
7 12990e+2 |B8.750e+0 : 3.280e-1 6.410¢-1 2.102¢-1 3.05Se-2 i TRUE
8 | 2990e+2 | 1.000e+1 : 3.400e-1 6.560e-1 | 2230e-| 305Se-2  TRUE
9 12990e+2 :1.125e+1 ' 3540e-1 16.720e-1 :2379-1 :3055-2 TRUE
10 | 2990e+2 : 1.250e+1 - 3 660e-1 6.720e-1 2.460e-1 3055e-2 :TRUE
11 | 2990642 | 1.375e+1 | 3790e-1 € 880e-1 2 608e-1 3055e-2 : TRUE
12 [ 2.9908+2 | 1.500e+1  3.880s-1 7.030e-1 2 728e-1 3.055%-2 TRUE

Figure 1. VEMINT MAC data window
Seven complex modulus equations are available in VEMINT MAC. They are

1. Ratio of factored polynomials
2. Rogers empirical

3. Bagley fractional

4. Huet fractional

5. Capps polynomial

.

. Nashif 8 puramcter

7. Nashif 15 parameter

Data and model parameters are displayed by VEMINT MAC in a spreadsheet-like
window in which characterization models are chosen using popup menus (Figure 1).
VEM data is read into VEMINT MAC in the form of ASCII text files with the format
shown in Figure 2. Tab-delimeted and English data formats are also supported. The
data in Figure 2 has already been characterized. New uncharacterized data must have
the same gencral format, but only the first four data fields are necessary, as shown in
Figure 3.
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001 3M 1ISD 113 SHEAR

————————— e et et e et e L T e
ALFA-T MODEL
NALF NA A1) A(D) A(3) A{4) A(5) A(6)

4 6 290. 220. 400. 5.016E-02 0.102 1.580E-03

————————— i e e it R e it ¢
COMPLEX MODULUS MODEL
NVEM NB B(1) B(2) B(3) B(4) Bio) 8(6)

4 6 4.190E-02 499. 4.640E+06 0.675 1.95 7.850E-02
--------- D e e o ke et ettt ¢
COMPLEX MODULUS DATA AS A FUNCTION OF TEMPERATURE AND FREQUENCY

Tenp Freq MReal Eta MImag Alpha-t

(DEG K) (HZ) (MPA) (MPA)

227.6 1861. 261.1 7.56T0E-02 19.76 2.7260E+C4 T
227.6 3579. 289.1 7.3270E-02 21.18 2.7260E+04 T
227 .6 5788. 307.7 6.6440E-02 20.44 2.7260E+04 T
241.5 1828. 170.1 0.2031 34.55 1576. T
241.5 3486. 179.8 0.2133 38.35 1576. T
241.5 5591. 188.0 0.2006 37.71 1576. T
255.4 638.0 28.06 0.90i8 26.21 129.9 T

Figure 2. VEM data previously characterized

The Macirnt- ... windowing interface is fully utilized to allow the user to simulta-
neously @i w iple plots and data side-by-side. Erroneous points, as might be
observed - .av «Wickst or the reduced frequency plots, may be double-clicked on and
their corresponding values are displayed in the data window.

The Collocation method is used to characterize all new data. The method uses
the “Spline fit of slope” temperature shift model in conjunction with the “Ratio
of factored polynormials” complex moduius wodel. This is described in more detail
below.

Once characterized, hardcopy of piots, such as the International and Wicket plots,
as well as numerical data may be laser printed. VEMINT MAC provides ail the plots
and data described in the proposed 180 standard [4]. These are

I. An updated tabulated data file
2. Plots of log(n) vs. log(G* v (f.T)) in S.I. and English, (Wicket plot)

3. A plot of log{ar), dlog(ar))/dT. and apparent activation energy vs. tempera-
Lure
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1 3M ISD 113 SHEAR
--------- e e T TP SR Y

ALFA-T MODEL

NALF NA A
0 0
--------- D e A e e it e
CGMPLEX MODULUS MODEL
NVEM MNB B
0 0
--------- B e e e ettt it R TR SR Y
COMPLEX MODULUS DATA AS A FUNCTION OF TEMPERATURE AND FREQUENCY
Temp Freq MReal Eta
(DEG K) (HZ) (MPA)
227.6 1861. 261.1 7.5670E-02
227.6 3579. 289.1 7.3270E-02
227.6 5788. 307.7 6.6440E-02
241.5 1828. 170.1 0.2031
241.5 3486. 179.8 0.2133
241.5 55691. 188.0 0.2006
255.4 638.0 29.06 0.9018

Figure 3. Uncharacterized VEM data
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- A plot of log(ar) vs. 1/temperature

W

5. Plots of log(frequency) vs. temperature, (8.1 and English)

6. Plots of log(G* r(f. 7)), log(G*(f,T)). and log(n) vs. temperature, (S.I. and
Frglish)

. Plots of log(n) vs. log(G*r(f,T)) with constant temperature lines and an ea-
perimental frequency axis (Reduced Wicket plot) in both S.1. and English

o &

Plots of log(G* (£, T)), log(G*;(f,T)), and log(n) vs. reduced frequency with
constant temperature lines and an experimental frequency axis (International
plot} in both S.I. and English

3. Temperature Shift Function

Historically, the WLF equation [2] has been used to define the TSF. Thiis, however, has
not been able to shift all viscoelastic material data correctly outside the transition. A
new approach is 1o use a spline fit of the slope of log ar for a relatively small number
of temperature points (e.g., 7 points) to define the TSF. The remperature points are
calculated such thac the corresponding ap values are equally spaced on the vertical
log scale.

The Wicket plot (Figure 4) is used interactively to obtain values for the maximum
loss factor (7max), the rubbery modulus asymptote (Gej, and the glassy modulus
asvmptote (Gg). The transition region is defined by 7jcuros, which is calculated as
O Dmax

The reference temperature, Tye, 18 obtained in two steps, first as the average of
the temperatures detining the transition region. Tren = (Teutofmin b Teutoff_max )/ 2-
[n {31 it was shown that the time-dependent stress-strain relations for a viscoelastic
material in the transition region is deseribed by

. 3
G fr) - (*_ij(%é)

) = — — 7 {1
14 (Lfli)
fro
where
: RN SRR 2\ 17]
. J fnﬂ'?kxi'-i—( g "<.l—( ’)( ) (l ! r/ma\) ‘
J arcTan e o s L
2 | A= 0) = 05
G,
38;\‘{)
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Figure 4. Wicket plot used to determine parameters

Solving for ar/fr, gives

ar (T)) 1{@—61’ 2)

fRo ZE Gg_G:

By fitting a quadratic through the data points defined within the transition by
N > Neutoff @n initial value for the slope of the log of ar at Tien is calculated. Next,
a quadratic fit of logn versus reduced temperature, where the reduced temperature
is given by

e ®
10g( faxp, / fret ) Texp,

Staft T,{n

Tredi =

1+

is used to calculate Tier = Treq evaluated at 7ax- A value of 100 Hz is presently used
for frer. The final reference slope, Seer, is re-calculated from the quadratic through
Equation 2.

A plot of logar versus T is then displayed, where ar is calculated from the
“d(log(ar))/dT is quadratic in 1/T” equation. As shown in Figure 5, the user may
adjust the temperature shift function outside the transition by changing the values
of d(log(ar))/dT (designated as SAL and SAZ) at the endpoints. Finally, ar is
calculated as the integral of the spline of the slope, where the constant of integration
is given by ar = 1.0 at Ti.
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Figure 5. Adjust d(log(ar))/dT endpoints

The accuracy of the TSF parameters is checked by looking at a plot of the complex
modulus data versus the reduced frequency. The spline knots may be interactively
adjusted if any isotherm “shingles” are observed (Figures 6 and 7). Note, the reduced
frequency at each temperature knot is calculated as

fri = a1 (Txnots) fret (4)

where f.r here is calculated as the geometric mean of the experimental frequencies

log (fref) = (i lOg fexp.) /Tl (5)

4. Complex Modulus

The “Ratio of factored polynomials” model is given by

o by o)
G (Z) = Ge I:Il I*;—T-(—i—),;; (6)

where

e

= )27fr
¢ = (G,JG)V*Y
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Figure 6. Spline knots may be interactively adjusted
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Figure 7. Reduced frequency after gross spline knot adjustment
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In the present effort 8x = 0.7 although values from 0.5 to 1.0 have been used in
the past.

Initial values of r; are generated by first calculating logarithmically even spaced
values between G, and G4 with

Gﬁtl = G.e

2
Gﬁt2 = Gﬁtle

— 2
Gﬁtn - Gﬁtn— 1€

A smoothing spline is fit to the magnitude complex modulus versus the reduced
frequency. To ensure full coverage from rubbery to glassy plateaus, the spline is
extended six decades below and above the minimum and maximum experimental
reduced frequencies respectively. Each r; is initialized as the reduced frequency at
each Ggy; on the spline. The 7, values are then iteratively refined with

<
Tinew = Tiold (—f—RﬁL—> (7)

to fit Equation 6 to the magnitude modulus spline, where fr., . .; is the reduced
frequency for Equation 6 which returns Gg,;. The exponent ( is set less than unity to
keep individual iterative steps from overshooting the spline. A value of 0.5 is presently
used.

5. Collocation

In addition to the smoothing spline fit through the magnitude modulus versus reduced
frequency, a smoothing spline is also fit through 7 versus the reduced frequency. This
is assumed to be the best estimate of the experimental loss factor. Starting with
the TSF knot closest to the reference temperature and alternately working out, the
corresponding reduced frequency is calculated using Equation 4. The equation

arctan (Meyrve, )

arctan (7lexp1>

Snew1 = Soldx

(8)

is then used to iteratively adjust the TSF based on the lack of fit of Equation 6. (Note,

within the program, S, .., is constrained to be within a user-defined percentage of
S()ldl')

This is in contrast to [1] where the Wicket plot was used to make the comparison
between 7, ., and 7,,,,. The change to using 7 versus reduced frequency alleviates
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Figure 8. Loss factor divergence at z

possible problems encountered with numerical ill conditioning outside the transition
where the slope of the Wicket typically gets stcep. The plot of n versus reduced
frequency is easily extended to allow the interactive adjustment of the TSF knots
directly on the computer screen as seen in Figures 6 and 7.

After all the TSF knots have been adjusted, the smoothing splines are re-fit for
both the magnitude modulus and the loss factor to the new reduced frequency and
Equations 7 and 8 are repeated. The process stops when Sy is within 1% of S,4
for every knot, or when a user specified number of iterations have taken place.

6. Observations

The need for good characterization has always been present. With advances in damp-
ing design tools the need has become even more critical.

The program VEMINT MAC has gone a long way toward more accurate charac-
terization of VEMSs; however, numerical difficulties still exist. It has been obs rved
that outside the transition, 7cyrve and 7., may begin to diverge at some reduced
frequency. This may be especially true when coverage of experimental frequency is
limited (Figure 10). A correction can be applied to the 7,’s that does not change the
modulus appreciably but does correctly adjust the loss factor and is the subject of
further study.
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VEMINT MAC, provides a great increase in the speed and accuracy with which
damping material characterizations may be processed. The materials user may quickly
find particular data points and set initial parameter values using the graphical inter-
face.

The use of the Collocation method effectively allows the data to define the TSF,
thus precluding possible errors due to operator bias. Numerical instabilities still need
to be addressed, however.
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ABSTRACT
Measurements of the damping properties of materials continues to be a major
effort at Anatrol to provide the basis for using both the damping and isolation
technologies. The current library of the damping properties at Anatrol contains
over a thousand materials and is being expanded on a daily basis. Those
materials have been completely characterized for their damping properties and are
stored on the computer in terms of:

* temperature and frequency

* dynamic and static non-linearities

* creep and relaxation behavior

* aging, outgassing, etc.
The properties for most of these materials have been measured by more than one
technique covering wide ranges of temperatures and frequencies to ensure their
accuracies and to arrive at the appropriate shift factor reducing the data.
This paper will give examples of the properties for various families of materials

currently on the data base and how they can be accessed by various users working
in the damping and isolation areas.

Anatrol Corporation, 10895 Indeco Drive, Cincinnati, Ohio., 45241
Tel: (513) 793-8844
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I. INTRODUCTION

Reducing noise and vibration levels in various products has been receiving more
and more attention in recent years. This increased level of awareness has been
caused not only bv the need to build better. more efficient items, but also
because proau-ts with low ncise and vibrational response are now being perceived
as having Dbette. quality. Products with 1lew noise and vibrational
characteristics can be designcd by implementing both passive and active control
systems. The approach for passive con.rol systems consists of mainly using
structural w.3dificaticns, dazping, and isolation. BRefore either the damping
and/or the isolation technologies can be properly utilized, howe'=r a good
knowledge of the dynamic behavior of the materials as functions of di:rferent
enviromments nceds to be known. Without such properties on hand it becomes verv
difficult to perform the analysis and optimize the design for a given system.

Available information on the properties of materials, either from manufacturers
or in the open literature, is limited, has considerabie scatter, and covers onl>
some environmental ranges. To overcome these limitations, Anatrol has undertaken
the task of measuring and evaluating the dynamic properties of materials under
various conditions. This information has been gathered to establish an extensive
data base used to assist in the design and implementation of passive control
systeme Over the past fourteen years, measurements have been made on several
thousand different materials including structural adhesives. PSA's, plastics,
enamels. rubber materials, foams, and composites.

The various techniques that have been used to measure the dynamic properties of
materials at Anatrol. include those that are in the frequency domain, such as the
impedance and beam techniques, and those that are in the time domain, such as the
relaxation and creep techniques. From those measurements the properties of the
specific material of interest 1is then generated in terms of temperature,
frequency, static non-linearity, dynamic non-linearity, and time under load.
Those properties are then curve fitted with analytical expressions and stored or
the computer as analytical functions along with other information, such as their
form of availability, resistance to solvents. outgassing, aging effects. and sc
on.

The purpose of this paper is to describe the current data base that is now
available at Anatrol. and how it can be accessed by user: to design various
passive coutrol svstems. Specific details regarding the measurement techuiuues,
presentation of the data. and the curve fitting analvsis can be found ir
Reference 1.

IT. MEASUREMENT TECHNTQUES

Difterent measurement techriiques are needed to evaluate the dyvnamic propertie:
of materials because such properties vary greatly with the differen:
environments, and curvently there is no one technique that is capable of covering
such evtreme ranges Another important reason for generating the data by mor:
thatn une technique is to cover wide temperature and frequency ranges for the
measurements to establish confidence 1in using the temperature-frequencv
superposition principle. Without having measured the data over such wide
temperature and frequency ranges and verified the accuracv of the shift facior

the use nt the tempovatnre-frequency superposition principle is likelv to be
questioned.  Anatrol has put forth the extra effort to make the measurements bv
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several techniques and over wide temperature and frequency ranges to establish
good confidence in the data base.

The various techniques that have been primarily used to generate the material
properties in the data base include, the beam technique, the impedance technique,
and the relaxation and creep techniques. Both the beam and impedance techniques
are used to measure the dynamic properties of materials in the frequency domain
at different temperatures and dvnamic loading conditions. The creep and
relaxation techniques are used to measure the relaxation modulus and the creep
compliance as functions of time under different loading conditions.

T1.1 BEAM TECHNIQUE

The beam technique is used to measure the dynamic properties of materials in
either shear or tension/compression over wide temperature and frequency ranges,
in the linear region of the material in terms of strain amplitude. The frequency
range where this technique is typically used is between from about 50 to 5,000
Hz. The technique is based on combining the material of interest to a metal beam
and making measurements on the composite system. By knowing the frequencies of
the various modes of vibration and their damping values along with the geometry
of the beam, the dynamic properties of the material under test can be computed
independent of the geometry. Typical properties for a material measured in shear
by the beam technique are given in Figure 1.

11.2 IMPEDANCE TECHNIQUE

The impedance technique consists of applying a known force into a sample and
measuring the resultant displacement. The force and displacement signals and the
phase angle between them are used to compute the dynamic properties of the
materials. Loading is typically applied in either tension/compression or shear,
depending on the geometry of the sample, to generate either Young's modulus or
the shear modulus. The impedance technique can cover frequency ranges from as
low as 10™® Hz to 1000 Hz. It is difficult to use the impedance technique at
higher frequencies because of fixture resonances. Also, it is difficult to use
this technique for may materials when testing in the glassy region because the
test specimen can approach the stiffness of the fixture. Even with such
limitations however, the material properties can be generated over wide
temperature and frequency ranges. Also, by using simple geometry and varying the
force, the hehavior of the material in terms of loading (static or dynamic) can
be measured.

Figure 2 represents the results measured by the impedance technique in shear over
a wide frequency range and at some selected temperatures.

IT1.3 RELAXATION AND GREEP TECHNIQUES

The relaxation and creep techniques are used to determine the response . f the
materials under load as a function of time. With the relaxation technijue, a
fixed displacement is applied to the sample and the resultant force is measured
as a functiorn of time. From such a measurement the relaxation modulus as a
function of time can be computed. On the other hand, the creep technique is
based upon applying a fixed force to the sample and measuring the resultant
displacement as a function of time, which will yield the creep compliance as a
function of time. The relaxation technique is usually used for soft materials
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while the creep technique is used for stiff materials. Tensien/cemprecsion or
shear specimens could be used with either technique.

Not only the behavicr of the marerial under locad as a funcrion of time can be
determined from such measnrements, but the results can also be used tz compute
the dynamic oproperties of the material at extremelv low freguency. by
transforming the measured data from the time domain into the frequency demain.

Figure 3 represents typical results for the relaxation modu:lus wegsured =
different temperatures with time.

I1.4 CORRELATION OF THY PROPERTIES

Figure 4 combines the results of Figure ! and 2 together. It can be seen here
that gnod correlstion s been achieved between the two technigues even though
those measurcd hv ~he [mpedance technique are for low trequenr .e3, while thaoge
tor the beam technique are tor higu frequency. This kind of corvelation pives
confidence in the shift factor used to ccllapse all the dara. Figure 4 is curve
litred with aiwiviical expressions which are then stored on rthe computer for
lerter use.

The correlatrion of the measured results by the impedance, beam, and rvelaxatior
technigques is shown in Figuie 5 for several samples. The agrecuwont berween the
various technigues illustrates that each technique is being wel! used within irs
limitation and ne erropveous data is generated.

IIT. DESCRIPTION OF THE DATA BASE
III.1 MEASUREMENT CONDITIONS

All materials in the data base are measured either in tension/compression tc
generate the properties in extenstion (Young'’'s modults and louss factor) and/or ir
shear to generate tue properties in shear (shear moedulus and losz facrer), [f
the properties are measured in both states of stress, then Poisscn's ratio cat
be computed. If the preopertiec are measured in one state of stress onlv, and the
material has a rubber-like behavior, then Poisson’s ratio can be assumed 10 be
almost 0.5 and the properties in the other state of stress can be crmpured.
Figure 6 represents the properties for the material of Figure 4 but for bort
states of stress.

All materials in the database avre measured over wide tempera: ve and frequency

ranges to enable curve tirting of the data with analvtical expressions as showr

in Fignre 4. Such aivtical expressions are then stored an the compurer {on
later analvsis or litevature search as necessary. In the tollrwing Figures, the

anzlvtical cxpressions are ased tn describe the marevial (roperrics in terms ot
tempersature {or some discrete frequencies. Other frequencies could be generate
from the stored curve ritred data as unecessary.

i addeeton o the above conditions, meny of the materials 1 the dala btacc are
also measnred in terms i sratic non-linearitv. dvnamic nen-lrrearite, aging
expnsure o high temr-ratee, and expasure to fuel and o311, and others . Figures
Jothromgh 10 cogireas e the effecto of such ercvirong nrs on the mes s ec
properties




I11.2 TYPES OF MATERIALS

Although it is difficult to classify all the materials in the data base, some
classifications could be used as follows.

ELASTOMERS

This heading includes all materials with tubber-like behavior a4t room
tremperature . Specificallv. such materials include the silicones, natural
rubbers, vitons, butyls, nitriles, ABS, and sc on. Figure 11 through 14
illustrate the properties of some of the materials in this category. Such
materials are used in various isclation systems, tuned dampers, and some
constrained and unconstrained layer damping tre tments.

PRESSURE SENSITIVE ADHESIVES

Pressure sensitive adhesives are widely used as <hi¢ damping materials in
constrained layer damping treatments. Such materials could be of the acrvlic,
silicone or rubber base type. Figure 15 and 16 give the properties of some of
these materials.

RPLASTICS

Many plastics are used as structural materials and as damping materials at high
temperatures. Those materials could include the various vinyls, styrenes, PMMA,
PEEK, PVC, polypropylenes. pclysulphones, nylons, and so on. Figure 17 and 18
contain the properties of some of the plastics from the data base.

FoAMS

Foams can be made from several materials such as acrylics, polyurethanes,
silicones, etc. and therefore, can have varying properties, as shown in Figures
19 and 20.

SPRAYABLE MATERIALS

Materials in this category include those that coulid be spraved on the structure.
for ease of application. The use of such materials is to provide extensional
damping over wide frequency ranges. Figures 21 and 22 illustrate the dynamic
properties of only two of the materials.

AVTOMOTIVE BODY PANEL MATERIALS

The materials under this heading, which are called "Mastics", are usually applied
to automotive body panels to provide damping. The materials can be either of the
heat bondable tvpe or the type that requires a pressure sensitive adhesive for
application. These materials have good damping properties around room
temperature as shown in Figures 23 and 24.

RAMPED LAMINATES

Laminates are now being used in various cheet metal applications in the
automotive, aircraft. and appliance industries to provide high damping. Because
such materials are sold in the laminate form (two lavers of metal sandwiching a
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I11.6 COMPOSITES

The data base includes both metal matrix composites and resin reinforced
composites. Those composites are usually measured assumir, they are homogeneous
materials. and such properties are shown in Figures 323 a. 1 37.

IV. ACCESS OF THE DATA BASE

The data base at Anatrol can be accessed in two ways. The first is for Anatrol
to perform a literature search for the customer on a job-by-job basis. This
search will be based on the customer specifying to Anatrol, the material
properties of interest, and the environmental factors to be considered in the
search. The second is for Anatrol to install parts, or all of the data base on
the customer's computer. For elther case. Anatrol will discuss the specific
requirements and scope of this service with the customer and quote it
accordingly.

REFERENCE

1. A.D. Nashif, D.1.G. Jones and J.P. Henderson. Vjbrati ing, Wiley
Interscience. 1985.
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ESTABLISHING THE VALIDITY OF THE MASTER CURVE TECHNIQUE FOR
COMPLEX MODULUS DATA REDUCTION

$.0. OYADUJI and G.R. TOMLINSON

Dynamics and Control Research Group,
Department of Engineering,
University of Manchester,
Manchester, M13 9PL, UK.

(061) 275 4437/8

ABSTRACT

The applicability of the master curve technique for the reduction of temperature- and
frequency—dependent complex modulus data to a set of "master" complex modulus curves,
which depend on only one variable, is validated for a polyisoprene rubber of shore
hardness §5. Using the direct stiffness method, complex Young's modulus data was
determined for a sample of the material over 2 narrow frequency bands of 2 octaves
each and a wide temperature range of —60C to 100C. Small temperature intervals of 2C
at low temperatures rising to 20C at high temperatures were used in the tests. This
resulted in two sets of "temperature-dominated” complex modulus data from which
smooth, continuous master curves were generated by the application of the master curve
technique. The procedure was repeated for a wider test frequency range of 2 decades,
the same temperature range but larger temperature increments of 10C at low
temperatures rising to 80C at high temperature. This resulted in a
"frequency—dominated” complex modulus data set from which master curves were again
obtained. It is shown that the master curves obtained from the three data sets correlate
quite well.
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1. INTRODUCTION

The master curve technique is a well known tool for the reduction of temperature- and
frequency-dependent complex modulus data to a set of master curves of modulus and
loss factor which depend on a single variable called the reduced frequency or reduced
temperature [1-3]. The technique, which is also called the method of reduced variables
or the temperature—frequency superposition principle, exploits the inverse relationship of
the dependence of complex modulus properties on temperature and frequency to produce
a dependence of these properties on a single parameter, the reduced frequency or the
reduced temperature, which combines the separate effects of frequency and temperature.
Thus complex modulus data obtained over narrow frequency ranges and a wide
temperature range, using a single test method, are reduced to sets of single curves of
modulus and loss factor which cover several decades of frequency at a specified reference
temperature.  Similarly, using an appropriate test method or a combination of test
methods, complex modulus data can be obtained over a wide frequency range and a
small temperature-range or even at constant temperature. From this data, master curves
can be again obtained. If, for the material under consideration, the
temperature—frequency superposition principle is applicable then the two sets of master
curves will be identical.

The use of the master curve technique started on an empirical basis.  Subsequently,
theoretical models were developed to correlate some of the experimental observations [1].
However, the development and application of the technique has tended to be more
empirically orientated. The shift function, which is used for the data reduction process,
was for a long time based on the William-Landel-Ferry (WLF) equation. Other forms
of shift functions based or the Arrhenius model, statistical method and iterative approach
are now in use [3, 4]. It is generally agreed that satisfactory data reduction depends on
the use of an appropriate shift function.

Whenever the method of reduced variables is applied, one is confronted by the question
of the uniqueness and validity of the generated master curves. Thus, it is often
desirable to employ other means to validate the master curves produced. The most
direct method of validation is to measure the complex modulus properties at a single
temperature, e.g. room temperature, and over a very wide frequency range using a
variety of test methods such as stress relaxation, direct stiffness, resonance and ultrasonic
methods. However, this is no usually possible as one is often restricted by resources, to
the use of one test method. Hence, a different approach is required.

The approach used in the present work for validating the master curve technique is
based on an experimental application of a result of the temperature—frequency
superposition or equivalence principle. If the priaciple holds for a given viscoelastic
material, then the master curves produced from complex modulus data obtained at
constant frequency and varying temperature should be identical to the master curves
genersted from complex modulus data obtained at constant temperature and varying
frequency. The constant frequency data sets are said to be “temperature—-dominated"
while the constant temperature data sets are said to be "frequency-dominated". Relaxing
these two extreme test conditions to become (i) narrow frequency band and many
temperature steps, and (ii) wide frequency band and few temperature steps, the sets of
complex modulus that will be obtained will still be relatively "temperature~dominated"
and "frequency—dominated" respectively. It is shown that for the polyisoprene rubber
investigated, the master curves of complex Young's modulus obtained from the
temperature-dominated and frequency-dominated data sets are quite similar. The
experimental test method employed is the direct stiffness technique.
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2. EXPERIMENTAL DETERMINATION OF COMPLEX YOUNG'S MODULUS

2.1 Direct Stiffness Test Method

The direct stiffness method, which is a forced vibration, non-resonance technique for the
determination of the complex Young's or shear modulus of polymeric materials [5-7],
was used to determine the complex Young's modulus of the polyisoprene rubber
investigated. Two samples of the material of 30 mm diameter by 5 mm and 30 mm
thick were prepared and bonded to metal discs. Each sample assembly was placed in
turn, between the vibration table of an electrodynamic exciter and a rigid termination of
theoretically infinite impedance as shown in Figure 1 which also shows the associated
measurement and control instrumentation for the experimental tests. The end of the
sample connected to the exciter was subjected to controlled sinusoidal dlsplacement
excitations of the form x(t) = Xel%t, The ratio of the output force f(t) = F*elut 1o the
input displacement gave the complex dynamic axial stiffness k* at the excitation
frequency w. The magnitude k, phase (loss) angle 6, and loss factor 7 are related to
k* by

k= |*] = |Frx|
o = k¥ = (F*/% (1)
n = tan ¢
Thus, the complex dynamic axial stiffness of the sample can be represented as
* +* wy M ’ .
- k¥ + jk =k (1 +
J . ( Jn) (2)
- |k*| - k'(1+ )}
2.2 Derivation of Complex Young's Modulus
Due to the restraints imposed on the bonded ends of a sample subjected to
tension—compression deformation, multiplying the complex stiffness k* by the factor L/A,
where L is length and A is cross-secnonal area of a prismatic sample gives an apparent

complex Young's modulus, Ea The true and apparent magnitudes E and E; of the
true and apparent complex Young's moduli are related by {2,8]

a = E(1 + 6S?) ; E; = kL/A (3)

where f is a numerical constant which has values of 1.5 £ g8 £ 2.0 that depend on the
filler content of the elastomer, and S is a shape factor defined as,

S = D/4L 4
for a solid cylindrical element of diameter D and length L.

Thus, the true complex Young's modulus E* is related to the measured complex
extensional stiffness k* by

E¥ = EX/(1 + 85S?) = k*L/(1 + BS2)A (5)
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where

E - |E*| - KL/(1 + BS2)A (6)

Neg = 7

3. COMPLEX YOUNG'S MODULUS DATA AND MASTER CURVES.

Using the procedures described above, the complex Young's modulus of the polyisoprene
rubber was determined under three test frequency conditions, namely;

(1) Narrow band, low frequency tests (10 to 40 Hz)
(2) Narrow band, intermediate frequency tests (100 to 400 Hz)
(3) Wide frequency band tests (10 to 1000 Hz)

The complex Young's modulus data obtained under these test conditions and the resultant
master curves are described in the following. In reducing the data to master curves, the
modulus data was firstly shifted vertically using the relation

Ep = (T/T)E (7

where E is the Young's modulus at experimental temperature T, E, is the reduced
Young's modulus at the reference temperature T,, and density variations are assumed to
be negligible. The shift factors used were of the general form

logor = ¢(T - T;) (8)
where the forms of the function y were determined directly from the measured data.

3.1 Narrow Band, Low Frequency Data

For the narrow band, low frequency tests, the experimental frequency was from 10 to

40 Hz, that is 2 octaves, while the temperature range was from -60C to 100C. The
temperature steps were 2C between —60C and -30C, about 3C between -30C and -10C,
10C between ~10C and 20C, and 20C for test temperatures between 20C and 100C.
This resuited in 30 test temperatures. The number of frequency points was 6 per data
set. Thus, the total number of Young's modulus and loss factor pairs of data obtained
was 180 as shown in Table 1. These data sets are certainly “temperature—dominated"”.
Figure 2 shows the wicket plot of log (loss factor) versus log (modulus) for the data.
The low temperature (below -50C) data seems to be subject to relatively higher random
errors whereas the high temperature data (above 20C) seems to be affected by some
systematic effects. Using the master curve technique, in its general empirical form,
master curves of Young's modulus and loss factor were produced from this data at a
reference temperature of —40C. The shift function used for the data reduction process is
shown in Figure 3. It was estimated numerically from the data using a computerized
data shifting process. The resultant master curves are shown in Figure 4. It can be
seen that the data scatter is low but it is significant for the loss factor curve at low
temperatures,
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3.2 Narrow Band, Intermediate Frequency Data

The test conditions for this case are quite similar to those of the previous case. The
only difference is that the frequencies are ten times higher than those of the narrow
band, low frequency data. Thus, the frequency range for the narrow band, intermediate
trequency tests is 100 to 4UU Hz (2 uctaves) wila uneyuai requency incieinents tesuiiag
in a total of 6 frequency points per data set. The test temperatures and temperature
steps are excactly identical to those of the previous case. Thus, 180 pairs of
temperature—~dominated data were again obtained as shown in Table 2. The wicket plot
of the data is shown in Figure 5. It can be seen that the data scatter is generally
small being higher for temperatures greater than 40C. By repeated data shifting process
a "best" estimate of the shift factor curve was obtained at a reference temperature of
-40C as shown in Figure 6. Using this curve the complex Young's modu'ns data was
reduced to master curves as shown in Figure 7. It can be seen that the data scatter is
quite small being relatively more pronounced for the loss factor data at higher
temperatures,

3.3 Wide Frequency Band Data

The frequency range of the wide frequency band tests was wider than the previous cases
being from 10 to 1000 Hz (2 decades). The frequency steps were about 12 per decade
giving 23 frequency steps in total. The temperature range used for the tests was again
from -60C to 100C but the temperature steps were higher being -10C at very low
temperatures and rising to 80C at high temperature. The number of test temperatures
used was 6. Thus, the total number of pairs of data was 138 as shown in Table 3.
These data sets are relatively more "frequency—-dominated" than in the previous cases.
Figure 8 shows the wicket plot for these data sets. It can be seen that the data scatter
due to random errors is small. However the 100C data set seems to be subjected to
some systematic errors as it is somewhat removed from the general body of data. By
means of the master curve technique, the data was reduced to master curves of Young's
modulus and loss factor at a reference temperature of -40C. The shift factor curve
used for the data reduction is shown in Figure 9. The master curves obtained are
shown in Figure 10. It can be seen that random data scatter is small but there may be
some systematic errors with the high temperature (low reduced frequency) data.

3.4 Comparison of Master Curves

The three sets of master curves of complex Young's modulus obtained are compared with
one another as shown in Figure 11. Except for some slight discrepancies which occur in
the loss factor master curves as high reduced frequencies, it can be seen that the master
curves correlate reasonably weH within the limits of data measurement and processing
errors. This implies that whether temperature-dominated or frequency-dominated data is
used, the master curves generated will be very similar and unique. Thus, it can be
concluded that the temperature~frequency superposition is valid for the reduction of
temperature—and frequency—dependent complex modulus data of polyisoprene rubber to
master curves.
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4. CONCLUSIONS

The master curve methodology is valid for the reduction of complex modulus data to
master curves provided the material under consideration is thermorheologically simple. It
has been demonstrated that the application of the master curve technique for the
reduction of complex Young's modulus data of the polyisoprene rubber investigated is
valid. Thus, it can be inferred that this material is thermorheologically simple. When
it is uncertain whether a material is thermorheologically simple, such a validity test, as
demonstrated in this paper, might prove useful.
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INTEGRATED OPTIMIZATION OF COMPOSITE STRUCTURES
FOR ADVANCED DAMPED DYNAMIC CHARACTERISTICS

D. A. Saravanos!
Case Western Reserve University
and
C. C. Chamis
NASA-Lewis Research Center

ABSTRACT

Polymer matrix composites exhibit significantly higher material damping compared to
most common metals. The current paper summarizes recent research on the develop-
ment of design methodologies for optimizing the damping and the damped dynamic
performance of composite structures. The optimal tailoring involves multiple materi-
al/structural levels, that is, the micromechanics level (fiber/matrix properties, fiber volume
ratio), laminate level (ply angles/thicknesses, stacking sequence), and structural level
(structural geometry and shape). The dynamic response and the modal damping ot the
composite structure are simulated with finite element analysis based on a special
composite element. A multi-objective constrained optimization scheme is proposed for
the best handling of the many competing design criteria involved. Applications on basic
structural components (beams and plates) demonstrate that properly tailored composite
structures can exhibit significantly improved damped dynamic performance.

Keywords: damping; composite materials; composite structures; optimization; design;
dynamic performance.

v Structures Division, Lewis Research Center, MS 49-8,
21000 Brookpark Rd., Cleveland, OH 44135; (216) 433-8466.
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INTRODUCTION

Fiber composite materials are widely used in structural applications requiring high
stiffness-to-weight and strength-to-weight ratios, as they readily provide high specific
moduli, high specific strengths, and tailorable anisotropic elastic properties. Polymer
matrix composites may also exhibit significantly higher damping compared to most
common metals. The previously stated requirements for advanced light-weight structures
virtually restrict the use of many traditional sources of passive damping, therefore, the
option to utilize the damping capacity of polymer-matrix composites appears very
attractive. Reported research on the damping of unidirectional composites and laminates
[1-6] has shown that the damping of composites is highly-tailorable and is primarily
controlled by constituent parameters (fiber/matrix properties, fiber volume ratio), and
laminate parameters (ply angles/thicknesses, stacking sequence). Additional research
work [7] demonstrated that the modal damping of composite structures depends also on
the structural geometry and deformation (mode shapes). This work also suggested that
properly designed composite structures can provide significant passive damping, and they
may further improve the dynamic performance and fatigue endurance by attenuating
undesirable elasto-dynamic phenomena such as structural resonances, overshooting, and
long settling times. The previous studies have also demonstrated that any increase in
damping typically results in decreased stiffness and strength, therefore, any tailoring of
the composite material for optimal damped response will be based on trade-offs
between damping, stiffness, and strength.

Although the optimization of composite structures for multiple design criteria including
damping appears to be worthwhile and its significance has been acknowledged [8],
reported research on the subject has been mostly limited to the laminate level [9,10].
Resent research performed by the authors has been focused on the optimal tailoring of
composite structures for optimal transient or forced dynamic response [11-13}. This work
is summarized herein and involves methodologies for the optima! design of polymer
matrix composite structures. The methods are equally applicable to structures subject in
steady or transient response, and they further entail: (1) multiple objectives to effectively
represent the array of competing design requirements; (2) capability for tailoring of the
basic composite materials and/or laminate; (3) capability for concurrent shape optimiza-
tion; and (4) design criteria based on the global static and dynamic response of the
composite structure.

The proposed design objectives are minimization of resonance amplitudes {or maximiza-
tion of structural damping), minimization of structural weight, and minimization of
material cost. Additional performance constraints are imposed on static deflections,
dynamic resonance amplitudes, natural frequencies, static ply stresses, and dynamic pl
stresses. The analysis involves unified composite mechanics, which entail micromechanics,
laminate and structural mechanics theories for the passive damping and other mechanical
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properties of the composite. The structural damping and the damped dynamic response
are simulated with finite element analysis. Applications of the methodology on the
optimization of a cantilever composite beams and a cantilever composite plate are
presented. The results quantify the importance of structural damping in improving the
dynamic performance of composite structures, and illustrate the effectiveness of the
proposed design methodology.

DAMPED STRUCTURAL DYNAMIC RESPONSE

To enable the design of general composite structures, a finite element discretization is
utilized. In such case, the dynamic response of a structure which is excited by a force
P(t) is expressed by the following system of dynamic equations:

[M}{a}+[C]{u} +[KH{u}={P()} 1)

where {u} is the discretized displacement vector. In the case of laminated composite
structures, the stiffness, damping, and mass matrices, /K], [C], and [M] respectively, are
synthesized utilizing micromechanics, laminate, and structural mechanics theories
representing the various material and structural scales in the composite structure.

The related theories for this multi-level simulation of structural composite damping are
described in refs. 1,2, and 7. Analogous theories are utilized for the synthesis of other
mechanical properties [14]. At the micromechanics level, the on-axis damping capacities
of the basic composite material systems are calculated based on constituent properties,
material microstructure, fiber volume ratio (FVR), temperature, and moisture. The
off-axis damping capacities of the composite plies are calculated at the laminate level,
and the local laminate damping matrices are predicted based on on-axis damping values,
ply thicknesses, and iaminate configuration. The damping contributions of the interlam-
inar matrix layers due to in-plane interlaminar shear are also incorporated [2].

The structural modal damping is synthesized by integrating the local laminate damping
contributions over the structural volume. The modal specific damping capacity (SDC) of
the n-th vibration mode {, is:

[ AW,dA

Y=
fAWMdA

@

where: A is the structural area; AW,, and W, are the dissipated and maximum stored
laminate strain energy distributions, respectively, of the n-th mode per unit area per
cycle. Utilizing the finite element discretization scheme proposed in ref. 7, the modal
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SDC is related to the element damping and stiffness matrices, /C,] and [K,] respective-
ly:

nel
%E { uein } T[Cﬂ'] {ueln}
R (3)

nel
%Z { uein} T[Kei] { ucin}
i=]

where, nel is the total number of elements and {u,,} the nodal displacements of the i-th
element corresponding to the n-th vibration mode.

The dynamic response of the structure is simulated based on modal superposition. The
dynamic system in eq. (1) is transferred to the p x p modal space via the linear modal
transformation {u} = [¢]/{q}. Assuming proportional damping, then the damping matrix
1s synthesized from the modal damping values. The frequency response (FRF) of the
structure, or the transient dynamic response is subsequently calculated. Typically the
resonance amplitudes, or the undamped amplitudes in transient response of most critical
vibration modes are used as performance measures.

OPTIMAL DESIGN

Originally, the optimal design of composite structures was conceived as a single-objective
constrained optimization protlem [11,12]. Although this research demonstrated the
advantages of damping tailoring, it indicated that the design of composite structures for
optimal dynamic performance is a multi-objective task, and may be best accomplished as
the constrained minimization of multiple objective functions. Increases in composite
damping may typically result in stiffness/strength reductions and/or mass addition, for this
reason, the minimization of weight and material cost was also included in the objectives.
The material cost is a crucial factor, restricting in many cases the use of composite
materials. Moreover, the distinction between weight minimization and material cost
minimization is also stressed, because fiber reinforced composites are nonhomogeneous
materials and the minimization of the weight does not also imply the ininimization of the
material cost. Therefore, the multi-objective formulation is summarized herein, as the
more general case.

A constrained multi-objective problem involving minimization of / objective functions is
described in the foilowing mathematical form:

min !F (2),F,(2),..,F(2)} 4

subject to lower and upper bounds on the design vector z and inequality constraints
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G(z):

b <z sY 5)
G s 0 6)

In the rest of the paper, upper and lower values are represented by superscripts L and U
respectively. Individual minimizations of each objective function subject to constraint set
(5,6) will result in a set of ideal solutions which define a target point F* =(F,", F,’,..,
F;). A solution of the multi-objective problem is then obtained by finding a feasible
point {F}= (F, .., F)) as closely as possible to the target point {F*}. This is achieved
by minimizing the following scaled objective function:

! (F-F))
mmE v‘( cFD

i=1

o M

subject to constraints (5,6). The weighting coefficients are represented with v;. Other

metrics or scaling procedures may be utilized in eq. (7), but in general, they are expected
to result in different solutions.

The design objectives typically include minimization of: (1) the maximum resonance
amplitude (min F,); (2) the total structural weight (min F,); and (3) the material cost
represented by the average cost of fibers (min F;). Alternatively, F, may represent the
maximization of select modal damping values. The explicit maximization of modal
damping may be preferred in the case of transient or a-prior: unknown dynamic excita-
tions. The fiber cost is used as a measure of the total material cost due to the high cost
of fibers compared to the cost of matrix. The design vector includes fiber volume ratios
(FVRs), ply angles, and shape parameters.

Performance constraints are imposed on static deflections u,,

(u’}) < {w') ®
dynamic amplitudes,
(U9} s {U%Y) )
natural frequencies {f,},
Ut s ) s (9 (10)

and the static and dynamic stresses of each ply o, in the form of the modified




distortion energy criterion [14],

f(e,8) -150 (11)

The constrained optimizations mentioned above are solved with the modified feasible
directions non-linear programming method [15,16]. The feasible directions algorithm
performs a direct search in the design space involving a series of iterations. In each
iteration, a search direction is calculated based on first order derivatives of the objective
function and active constraints. A line search is subsequently performed along the search
direction and a suboptimum along the search direction is calculated. The iterations are
repeated until convergence to a local optimum is achieved.

W\

y

o

Fig. 1 Candidate composite structures. (a) Initial beam geometry; (b) Initial
plate geometry: (¢) Laminate configuration. Dimensions are in inches.
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APPLICATIONS

Selected evaluations on the method on the optimal tailoring of a cantilever graph-
ite/epoxy composite beam and a cantilever graphite/epoxy composite plate are presented
(Fig. 1). The assumed laminate configuration in both structures is symmetric consisting of
angle-ply sublaminates 1, 2, and 3 in each side. All sublaminates had plies of equal
thickness (0.01 in). The ply angles ; and FVRs k; of each sublaminate, and the thick-
nesses h; at 0%, 30%, 60%, and 100% (tip) of the span were optimized. The thickness at
other sections was interpolated using a cubic spline fit. A unidirectional ply configuration
was selected as the initial baseline composite design for both cases, because it provides
high axial bending rigidity.

Composite Beam in Impulsive Excitation: Typical improvements in the predicted impulse
response (y-axis) of an optimized composite beam design are shown in Fig. 2. In this
particular case, a single objective function was implemented, such that, the modal
damping corresponding to the mode with the higher undamped dynamic amplitude was
maximized [11]. The optimization variables involved only composite parameters, that is,
FVRs and fiber orientation angles. The baseline and resultant optimum design is shown
in Table 1. Clearly, the free response of the optimized beam has been drastically im-
proved, although the undamped dynamic amplitude was increased.

Table 1. Optimum design for Composite Beam in Impulsive Excitation

Baseline Design Cptimum Design

Ply Angles, (degrees)

0, 0.0 30.24
6, 0.0 30.49
6, 0.0 29.76

Fiber volume ratios

Ky, 0.50 0.69
K 0.50 0.53
Ky 0.50 0.50

Multi-Objective Design of the Composite Beam in Forced Excitation: As a next applica-
tion, a case of optimal design of the composite beam, involving the three objective
functions mentioned above, is presented [13]. The assumed loading conditions involved a
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combination of uniform static transverse out-of plane (y-axis) forces (50 lbs/in) and
transverse out-of-plane harmonic forces (0.1 lbs/in amplitude) applied at the tip of the
beam. The design variables included both composite parameters (FVRs and ply angles)
and shape parameters \cross-sectiona: aickinessés). In addition to constraints (8) and
(11), constraints included upper bounds on the transverse static deflections at the free
end lower bounds on the first two natural frequencies, and upper bounds on the
transverse resonance amplitudes at the tip, for each of the first four modes.

Table 2. Multi-objective optimum designs: Composite beam

Baseline Single-Objective Designs Multi-Objective
min F1 min F2 min F3

Ply Angles, (degrees)

9, 0.0 24.68 13.55 4.306 24.46
0, 0.0 24.05 -41.19 41.150 53.53
0, 0.0 -50.33 -65.56 44.863 90.00

Fiber volume ratios

kg 0.50 0.637 0.630 0.294 0.512
ke, 0.50 0.700 0.021 0.010 0.010
ke 0.50 0.010 0.010 0.010 0.010

Table 2 also shows the baseline design, the three single-objective optimal designs (each
objective function individually optimized), and the resultant multi-objective optimal
design. All optimized designs have non-uniform thickness, being thicker at the proximal
end and thinner at the distal end. The apparent differences among the optimal shapes
demonstrate the significance of shape optimization. The relative improvements of each
objective function with respect to the baseline design are plotted in Fig. 3. As seen in
Fig. 3, the single-objective optimizations have failed to reduce all objective functions.

Only the multi-objective optimal design produced simultaneous improvements in all
design objectives.

The frequency response functions at the mid-point of the free-edge of the initial : nd
optimized beams are shown in Fig. 4. The multi-objective optimum design has a better
FRF than the minimum cost and minimum weight designs. This suggests that the
incorporation of composite damping was crucial in obtaining these significant improve-
ments in all objective functions illustrating, in this manner, the significance of composite
damping in the design of high dynamic performance, light-weight, and low-cost composite
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structures.

Multi-Objective Design of the Composite Plate in Forced Excitation: The optimization of
the composite plate involves additional structural complexity, therefore, the present
application provides additional insight in the optimal design composite structures {13]. In
this case, the loading conditions included combinations of a uniform static transverse out-
of-plane (y-axis) force (3.12 Ibs/in) at the free end, a uniform transverse out-of-plane
harmonic force (0.0063 Ibs/in amplitude) at the free end, and a harmonic moment
(0.0313 Ib-in/in amplitude) also applied along the free-edge of the plate. Under this type
of dynamic loading, the maximum resonance amplitude at the tip typically occurs either
at the first mode (first out-of-plane bending in the baseline design) or at the second
mode (first torsion in the baseline design). Both composite parameters and shape
variables were optimized. In addition to constraints (8), and (11), constrains included
upper bounds on the transverse static deflections of the free-end, lower bounds on the
first four natural frequencies, and upper bounds on the transverse resonance amplitudes
of the free-end for the first four modes (Table 3).

Table 3 also presents the initial baseline design, the three single-objective optimal
designs, and the resultant multi-objective optimal design. The relative changes in the
objective function values with respect to the initial unidirectional plate are shown in Fig.
5. A strong tendency was observed in the optimum designs to result in “sandwich” type
laminate configurations with a constrained thick matrix core (sublaminates 2, 3) and
angle-ply composite skins (sublaminate 1) that provided stiffness and strength. The same
tendency was also observed with the beam design but was less predominant. This inter-
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composite beam

esting result was the direct benefit of introducing unified micromechanics into the
analysis, and consequently, the FVRs into the design parameters. The optimal designs
varied drastically in optimal thickness shapes, ply angles, and FVRs, which demonstrated
the inherent tendency of composite structures to get overdesigned.

The resultant frequency response functions of the transverse y-axis deflection at the
foremost corner of the plate (x=16 in, z=8 in), where the maximum dynamic deflection
was observed for almost all optimal designs, are plotted in Fig. 6. Interestingly, the
minimum weight design has the higher resonance amplitudes, even than the baseline
plate, illustrating the unsuitability of the minimum weight design for improving the
dynamic performance. As both case studies illustrated, optimal design methodologies
neglecting the damping capacity of composite materials and its controllable anisotropy
may lead to structures with inferior dynamic performance near the resonance regimes,
hence, they appear unsuitable for optimizing the dynamic performance of composite
structures.
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Table 3. Multi-objective optimum designs: Composite Plate

“Baseline :S'ingle-éb_jectiveﬁl-)esigns Multi-Objective
min F1 min F2 min F3

Ply Angles, (degrees)

9, 0.0 11.74 24.91 33.97 24.23
0, 0.0 -83.10 50.38 68.88 49.92
6, 0.0 -4.06 56.22 -47.84 -52.70

Fiber volume ratios

ke, 0.50 0.700 0.698 0.225 0.301

Kp 0.50 0.010 0.010 0.010 0.010

K 0.50 0.010 0.010 0.010 0.010
SUMMARY

Research work at NASA-Lewis Research Center on the deveiopment of optimal design
methodologies for optimizing the damping of composite structures and their dynamic
performance was summarized The design methodologies provide the option of multiple
objective functions, and may tailor composite parameters at multiple scale levels of a
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composite plate

composite structure. The structural dynamic analysis included the effects of composite
passive damping on the dynamic response of composite structures via integrated microm-
echanics, laminate, and structural damping theories. Performance constraints were
imposed on static displacements, static stresses, dynamic resonance amplitudes, natural
frequencies, and dynamic stresses. The described method has been integrated into an
in-house research code [16].

Basic application cases illustrating the optimal design of a cantilever composite beam and
a cantilever plate were reviewed. All cases illustrated that optimal tailoring may signifi-
cantly improve the damping capacity of composite structures and result in superio-
dynamic performance. It was also demonstrated that the damping capacity of composites
is an important factor in designing light-weight, low-cost composite structures of im-
proved dynamic performance. The multi-objective optimization was proved superior in
minimizing the competing requirements involved. The optimizations with single-objective
functions have shown a strong tendency to overdesign the structure and did not improve
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all objectives. The resultant optimal designs illustrated that both material (fiber orienta-
tion angles, fiber volume ratios) and shape parameters contributed to the obtained
improvements. Overall, the applications of the method appeared very encouraging.
Additional studies on more complex structural configurations and dynamic excitations
may well worth the effort, therefore, are recommended as future research topics.

REFERENCES

1. Saravanos, D. A. and Chamis, C. C., “Unified Micromechanics of Damping for
Unidirectional and Off-Axis Fiber Composites,” Journal of Composites Technology and
Research, Vol. 12, No.1, Spring 1990, pp. 31-40.

2. Saravanos, D. A. and Chamis, C. C.,, “Mechanics of Damping for Fiber Composite

Laminates Including Hygro-Thermal Effects,” AI44 Journal, Vol. 28, No. 10, 1990, pp.
1813-1819.

3. Adams, R. D. and Bacon, D. G. C., “Effect of Fibre Orientation and Laminate
Geometry on the Dynamic Properties of CFRP,” Journal of Composite Materials, Vol. 7,
Oct. 1973, pp. 402-428.

4. Ni, R. G. and Adams, R. D., “The Damping and Dynamic Moduli of Symmetric
Laminated Composite Beams -- Theoretical and Experimental Resulis,” Journal of
Composite Materials, Vol. 18, March 1984, pp. 104-121.

5. Siu, C. C. and Bert, C. W, “Sinusoidal Response of Composite-Material Plates with
Material Damping,” ASME Journal of Engineering for Industry, May 1974, pp. 603-610.

6. Suarez, S. A., Gibson, R. F,, Sun, C. T. and Chaturvedi, S. K., “The Influence of Fiber
Length and Fiber Orientation on Damping and Stiffness of Polymer Composite Materi-
als,” Experimental Mechanics, Vol. 26, No. 2, 1986, pp. 175-184.

7. Saravanos, D. A. and Chamis, C. C., “Computational Simulation of Structural Compos-
ite Damping,” Journal of Reinforced Plastics and Composites, in-press, 1991.

8. Bert, C. W, “Rescarch on Dynamic Behavior of Composite and Sandwich Plates -
IV,” The Shock and Vibration Digest, Vol. 17, No.11, 1985, pp. 3-15.

9. Liao, D.X,, Sung, C.K. and Thompson, B.S., “The Optimal Design of Laminated

Beams Considering Damping,” Joumal of Composite Materials, Vol. 20, 1986, pp.
485-501.

XCA-14




10. Hajela, P. and Shih, C. J., “Optimum Synthesis of Polymer Matrix Composites for
Improved Internal Material Damping Characteristics,” AIAA Journal, Vol. 26, No. 4,
1988, pp. 504-506.

11. Saravanos, D. A. and Chamis, C. C., “Tailoring of Composite Links for Optimal
Damped Elasto-Dynamic Performance,” Proceedings, ASME Design Automation Confer-
ence, Vol. No. H0509C, Montreal, Canada, Sept. 17-20, 1989.

12. Saravanos, D. A. and Chamis, C. C., “A Methodology for Optimizing Structural
Composite Damping,” Journal of Polymer Composites, Vol. 11, No. 6, 1990, pp. 328-336.

13. Saravanos, D. A. and Chamis, C. C., “Multi-Objective Material and Shape Optimiza-

tion of Composite Structures Including Damping,” 4144 Journal, to appear, 1991. (Also,
NASA TM-102579)

14. Murthy, P.L.N. and Chamis, C.C., “ICAN: Integrated Composite Analyzer,” AlAA
Paper 84-0974, May 1984.

15. Vanderplaats, G. N. “A Robust Feasible Directions Algorithm for Design Synthesis,”
Proceedings, 24th AIAA/ASME/ASCE[AHS Structures, Structural Dynamics, and Materials
Conference, Lake Tahoe, NV, 1983.

16. Brown, K. W., “Structural Tailoring of Advanced Turboprops (STAT) - Interim
Report,” NASA CR-180861, Aug. 1988.

DCA-15




An Optimum Design Methodology for Passively Damped Truss
Structures

R. A. Manning®
TRW Space and Technology Group
Redondo Beach, CA 90278
(213) 813-9125

ABSTRACT

Many of the complex space structures proposed for future space missions will utilize en-
hanced damping to meet stringent performance requirements. The enhanced damping is
necessary to prevent excessive slew/settle times, unacceptable jitter levels, and harmful con-
trols/structures interactions. There are currently no documented integrated design method-
ologies for designing damping into complex structures early in the design process.

In this paper, an optimum design methodology is presented for truss structures aug-
mented with constrained layer viscoelastically damped members. The methodology is pre-
sented as a two stage procedure. In the first stage, efficient locations for the passive members
are found heuristically, thus avoiding a computationally burdensome combinatoric optimiza-
tion problem. In the second stage, a formal optimization procedure is used to simultaneously
size both the truss members and the passive members. Values for the design variables at the
optimum design are found by solving a sequence of approximate problems. Each approxi-
mate problem is constructed using design sensitivity information in conjunction with first
order Taylor series expansions. The sizing-type design variables treated in the optimum de-
sign procedure are inert structural member cross sectiona! dimensions, passive member cross
sectional dimensions, passive member viscoelastic layer and constraining layer thicknesses.

The complex space structure design problem is posed as a nonlinear mathematical pro-
gramming problem in which an objective function critical to adequate mission performance
(e.g., line-of-sight errors or settling time following slew) is to be minimized. Limitations con-
sidered during the design procedure include an upper bound weight cap, dynamic response
constraints (which represent additional mission requirements), and side constraints on the
design variables.

* Staff Engineer
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INTRODUCTION

Stringent performance goals for future space missions will require minimum levels of
“designed-in” damping. The necessary levels of damping can be added through either active
or passive means. Active damping requires sensors and actuators, a source of power, and a
compensator (control law) which gives good performance and remains stable .. the wake of
structural parameter uncertainty and change. Passive damping requires high loss viscoelastic
or fluid materials and thermal control. For some space systems, the lack of adeqate power
margins and the potential for gross structural parameter perturbations suggest that passive
damping methods are the method of choice.

Recent developments in analysis and fabrication techniques have led to the consideration
of constrained layer viscoelastically damped members for vibration suppression. Bronowicki
et al. [1] derived a special purpose finite element for use in analyzing such members. In
addition, Reference 1 is notable for the fabrication and hardware verification of the pas-
sive members. Hedgepeth [2] derived simplified design equations for use with segmented
constraining layer VEM damped members. His results yielded expressions for the real and
complex stiffness of these meml: . when 'na.lo axially (ie., when vsed ac trucs members)
In order to utilize passive members on complex space structures, automated design proce-
dures are needed which employ these analysis methods.

The approach used in the current work was to start at the element level and develop
a design-oriented procedure for passively damped structures. Other approaches, Gibson
and Johnson [3], for example, have developed system level optimization capability utiliz-
ing a prepackaged finite element code such as NASTRAN in conjunction with the ADS [4]
optimizer. Because a prepackaged finite element code was used, the viscoelastic damping
treatment had to be modeled using standard elements, such as the QUAD4, HEXA, and/or
PENTA elements, and sensitivities had to be computed numerically. Starting at the ele-
ment level allows the calculation of element design sensitivities in closed form for use with
gradient-based optimization packages. The closed form element level sensitivities avoids
the computational intensity of finite difference-based sensitivity information. Furthermore.
the availability of inexpensive and accurate gradients gives credence to the construction of
high quality approximations for use during the optimization procedure. These high quality
approximations, in conjunction with a suitable nonlinear mathematical ;:rogramming proce-
dure, allows many optimum design problems to be solved in relatively few complete dynamic
analyses.

In the current study. the design problem is posed as a combinatoric optimization problen:
in which passive member placement, inert member cross sectional dimensions, and passive
mermber cross sectional dimensions are treated simultaneously as design variables. By de-
signing the inert and passive members simultaneonsly, strain energy can be funneled into the
passive members, thus yielding suitable levels of damping. The design optimization proce-
dure is applied to a problem where purely mass and stiffness redistribution has little chance
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for success due to the broadband nature of the disturbance.
OPTIMUM DESIGN PROBLEM STATEMENT

The optimum design problem used for this work is

min LOS(d,t) (1)
subject to

9(d,t) <0 (2)
along with the side constraints

d <d<ad (3)

where it is understood that d is the vector of design variables for the inert truss members
and the passive members.

The design problem stated in equations (1) through (3) corresponds to a spacecraft
design problem where maximum performance is obtained by minimizing a single specified
performance index, such as a line-of-sight (LOS) pointing error. Other restrictions on the
performance of the spacccraft, such as an upper bound mass cap, limits on the travel of
key optical or sensor components, limits on the loads induced in fragile sensor/ele-trical as-
semblies, and dynamic stability margins for controlled structures, are specified as additional
constraints, g.

Figure 1 contains schematics of the inert truss design elements and the passive member
design elements. For the inert truss design elements, the inside diameter and wall thickness of
the member are the design variables whereas the reciprocal of the cross sectional area is used
as the optimization variables. For the passive members, the design variables are the inside
diameter of the base tube and it’s wall thickness, the thickness of the viscoelastic material,
and the thickness of the constraining layer. Optimization variables for the passive members
are the reciprocal of the area of the tube, the viscoelastic material, and the constraining
layer. A 100% mass penalty was applied to each passive member to account for thermal
control hardware.

The sysiem optimization problem posed in equations (1) through (3) is an implicit com-
binatoric optimization problem. The task of placing the passive members on the structure
for maximum effectiveness gives rise to the combinatoric nature of the problem. Further-
more, both the objective function and the constraints are complicated implicit functions of
the design variables. A limited number of solution methods exist for this class of problems,
all of which are computationally burdensome.
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SOLUTION METHODOLOGY

An alternative solution methodology is to separate the combinatoric and implicit aspects
of the problem and attack each subproblem individually. A flow diagram for such a proce-
dure is shown in Figure 2. Placing the passive members at efficient locations on the structure
involves solving a heuristic subproblem. One solution to the heuristic subproblem is to place
the passive members in regions of high strain energy for the modes that are to be damped.
Optimum values for the design variables are then found using a formal optimization proce-
dure with the locations of the passive members fixed. The formal subproblemn replaces the
implicit problem posed in equations (1) through (3) with the explicit approximate problein
5

min LC)S(d,t) (4)
subject to
g(d,t) <0 (5)
along with the side constramts
d'<d<d* (6)

where Loth the objective function and the constraints have been replaced by the explicit
hybrid 6] first order Taylor series, LOS and §, recpectively.

Somtion of the Siplicit optimumn design problem posed in equations (1) through (3)
jproocecds by Lolve Usequence of heuristic and formal subproblems. Each formal subproblem
irvolves solving a sequence of approximate problems (stated in equations (4) throngh (6)).
A pictorial description of the complete solution sequence to the original optimum design
probleri is shown in Figure 2.

SYSTEM DESCRIPTION

The stractral dviamie equations of motion for the class of problems dealt with here,
narnely trues st tures ancmented with passive members, can be written as

MZ 4K, + K,)Z =R .;

0
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where the system plant matrix is given by

0 I
A= [ ~w? —¢TK,¢ ] (10)

the state X is the vector of stacked modal displacements and velocities
x=41 } 11
{1 (1)

B= ['ﬁgR] (12)

The M and K, matrices are computed for the truss elements in the usual finite element
manner. The K, and K, matrices are computed for the segmented constrained layer passive
members using the analysis methodology presented in Reference 2. The effective stiffness of
the passive member can be written in terms of the stiffness of the tube wall, k., and the
stiffness of the constraining layer, k., as

and the input matrix is

k, + k.

kess = ke tanh(DI (13)
Ly f P

The D parameter is related to the shear lag length 7 by

l
= — 1
D 57 (14)

The shear lag length, which is used for determining the lengths of the segments of the
constraining layer, is given by

= .
Goem 1+ 555

where G,em is the complex shear stiffness of the VEM. Sensitivity information at the element
level is found by taking the derivat /e of the effective stiffness of the passive member with
respect to the design variables.

Solution of equation (9) for the system response due to external loads is accomplished
by computing the complex modes of the system plant A and solving the resulting unroupled
equations in the frequency domain.




EXAMPLE PROBLEM

The structure shown in Figure 3 will be used to demonstrate the benefits of the previously-
described optimization procedure. The structure is a scaled version of a proposed Space
Based Interferometer [7]. Two 13 meter arms run out from the sides of the interferometer and
hold light-collecting telescopes at the tips. The 11 meter tower contains a telescope running
down its center while laser metrology equipment is mounted at the end of an additional
11 meter truss. In an undeformed, perfectly-aligned :tate, the two 13 meter arms give an
optical path length (baseline) of 26 meters.

Dynamic distrubances from the attitude control system reaction wheels are fed into the
structure at the central bay. The interferometer can acquire data when the relative alignment
(tip and tilt) of the collecting telescopes is less than 8urad and the optical path length does
not substantially deviate from 26 meters. Therefore the design optimization problem is to
minimize path length deviations from 26 meters while maintaining relative tip and tilt of
the collecting telescopes within 8urad. An upper bound mass cap of 252 kg is also imposed
on the system. This cap corresponds to the preliminary design mass of the completely inert
system (without passive member augmentation).

The purely inert preliminary design of the SBI was used as the point of departure for
the optimum design procedure. The performance of the interferometer at the preliminary
design is shown in Figure 4. Unacceptable optical lengths and relative tip and tilt motion
of the collecting telescopes exceeding 8urad were obtained. The modes at 4.4, 16.4, 19.0,
27.7, and 36.9 Hz needed damping augmentation to achieve the performance goals. It should
be noted that purely structural methods (i.e., mass and stiffness redistribution) are doomed
to failure in this case because of the wide band disturbance and the stringent performance
levels required. Locations for the passive members were determined by examining regions
of high strain energy for the modes which needed damping augmentation. This, in effect.
results in a solution to the heuristic placement subproblem. A total of 56 passive members
were added to the system.

The performance of the interferometer following optimization is shown in Figure 4. Opti-
cal length deviations have been reduced from 3.16 um to 0.11 um while bringing the relative
tip and tilt motion of the collecting telescopes down to acceptable levels. The peak tip and
tilt motions at the optimum design are 7.5 prad and 7.8 prad, respectively, having been
reduced from 27.7 prad and 48.3 prad at the initial design. A comparison of damping levels
at the intial design and the optimum design for each of the modes below 40 Hz are shown
in Table 1. Though a large number of passive members were added, the design optimization

procedure managed to meet the mass cap of 252 kgs and reduce the interferometer baseline
by a factor of 287,
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Table 1: Initial and Optimum Frequencies and Damping Ratios

Initial Design Optimum Design
Mode Number | Frequency (Hz) | ((%) | Frequency (Hz) | ((%)
1-6 0.0 0.0 0.0 0.0
7 4.4 0.2 4.1 4.7
8 6.5 0.2 6.1 3.9
9 7.2 0.2 6.8 2.0
10 8.4 0.2 7.9 4.5
11 8.5 0.2 7.9 3.4
12 12.9 0.2 12.0 3.7
13 16.4 0.2 14.8 4.1
14 19.0 0.2 173 29
15 19.2 0.2 17.8 3.2
16 21.7 0.2 20.6 0.6
17 24.5 0.2 22.0 3.9
18 21.7 0.2 24.6 9.3
19 29.1 0.2 26.9 3.1
20 36.9 0.2 33.6 4.6

CONCLUDING REMARKS

An integrated inert truss/passive truss member design optimization methodology has
been developed. The methodology treats both structural design variables and passive mem-
ber design variables simultaneously in the optimization procedure. By employing a two stage
heuristic/formal subprobiem solutior procedure, the computational burden associated with
placing the passive members on the structure is avoided. A solution for the implicit for-
mal subproblem is found in relatively few complete dynamic analyses by solving an explicit
approximate problem. Design sensitivity information was efficiently computed by differenti-
ating a closed form expression for the complex stiffness of the passive members. The design
optimization procedure is a mission-enabling technoiogy for future space missions with ex-
tremely stringent dynamic performance requirements where purely structural solutions fail.
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ON AN APPLICATION OF COMPLEX DAMPING
COEFFICIENTS

M. Tong, Z. Liang, and G. C. Lee

412 Bonner Hall
State University of New York at Buffalo
Ambherst, NY 14260

ABSTRACT

Complex damping theory is a useful tool in analysis of energy
transformations among modes of a vibration system. Based on this theory,
there are many applications and improvements in the areas of system

identification, vibration control and damper optimization design.

This paper presents an application of the theory in regard to finite
element model corrections. First, a common shortfall of usual correction
procedures is analyzed. In order to deal with this problem, a correct

correspondence rule is then proposed. With the help of complex damping

coefficients, improvements to certain correction procedures are discussed.
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INTRODUCTION

The dynamic performance of a structure may be characterized by different
mathematical models. Among them, the modal model and the physical model
are most frequently seen. A modal model which consists of a set of modal
parameters is often used In harmonic-related vibration control, In dynamic
behavior analysis, and in physical model modification. Since a modal model
is essentially a dynamic representation of the physical model in the modal
domain. The transformation of physical coordinates into modal coordinates
is always accompanied by a certain loss of Information, a modal model is

generally considered to be a weak model but relatively easy to obtain.

A physical model consists of three coefficient matrices: The mass,
damping and stiffness matrices. If such a model is known, all the modal
parameters can be calculated. Conversely, a physical model can not be
determined in general from a modal model. In this regard, a physical model

is considered superior than a modal model.

In engineering practice, a physical model is not always avallable because
not all the coetficient matrices can be directly measured. The measurable
quantities are often the various dynamic responses and modal parameters of
the structural system. Based on these data, we can typically generate an
approximate model - an analytical model, using the finite element method
(FEM). In most cases, the analytical model is inaccurate and requires
various adjustments or corrections. In the past decades, many attempts
have been made to develop better algorithms to modify the FEM models. At

present, the need to develop appropriate aigorithms continues to exist.

From the analytical model to the physical model, an important step is to
perform model corrections. In a general model correction procedure, the
goal is to obtain a set of coefficient matrices, mass M, damping C and
stiffness K. What we have at the beginning is the analytical model data
H(a', c'® and K(a}. along with some dynamic parameters of the physical
model, such as measured response #' ™ and/or modal parameters: Undamped

. (m) R . ~m) (m)
natural frequencies Q , damping ratios = and mode shapes p . In
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each step of the corrections, we obtain certaln corresponding matrices

(1) (1)

M, c'" and k"'’ as approximations to the real M, C and K. Then we

typically compare the measured response X(m) and/or modal parameters Q("),

='® and P, with the calculated response X''’

Q(‘), =" anc P'"’ from the revised analytical model. If the discrepancy

, and/or modal parameters

between the two sets of data is less than a certain preset level, then the
revised analytical model is accepted as the physical model. Otherwise, the

correction procedure is continued.

In such a correction procedure described above, a number of factors can
influence the final result. There are many existing algorithms that do not
converge ln general. For those that converge may have problems in
targeting the correct M, C and K because the comparison criterion used is

not sufficiently comprehensive.

In this paper, we propose an alternative judgment on the effectiveness of
model corrections. Our discussions will be restricted to finite element
models and thelr corrections under the assumption that the models are

linear, time-invariant and have lumped-masses.

RESPONSE-FITTING

One of the simplest model correction methods is the time domain response-
fitting. In order to carry out this method, a time history (or transfer
function) of the testing structure must first be recorded. The time
history can be a free decay response with an initial input such as sine-
burst, white noise-burst, impulse, etc. Or it can be a forced response
under an excitatlon such as sinusoidal, sine-sweep, sine-dwell, pseudo
white-nolse or simulated selsmlic ground motion. In a carefully conducted
experiment, the measured response is considered "noise-free". Thus it is
ready to be used as the correction reference. Once the reference |is
avajlable, corresponding samples are collected from a calculated response
of the analytical model with same initial phases and time intervals. Then
by using certain mathematical techniques such as the least-square method
or the maximum-likelihood method, a cost function is generated to measure

the discrepancy between the two responses. Equation (1) gives a least-




square cost function (Natke, 1988).

P n (m) {a) 2
J = 151 ng o ( Xy T xU ) (1)
{(m) (a) th
where, x and x are the 1 samples of measured and calculated

1) 1)
responses from the Jth node respectively. The total number of samples from
each source is p and the number of nodes is n. alj are welighted
coefficlents. In general, at certain nodes, samples are measured more
accurately than at other places, the weighted coefficients of these
samples will then be assigned with greater values. Conversely, the tail
of a free decay response is thought to have poor signal-to-noise ratio,
the weighted coefficients of samples from thils portion will be assigned

with smaller values.

The value of J indlicates whether the analytical model is close to the
physical model. When the response of the analytical model does not fit the
response of the structural system, J will assume a large value. Corrections

to the analytical model will then be made to reduce the value of J.

Due to several reasons, response-fitting is often considered unsatisfactory
in terms of its model correction effect. First, when a given excitation
with a nearly straight spect:,um, the structural response should
thecretically incorporate the influences of all modes of the structural
system. However, lower modes are usually associated with large percentage
of the total energy lnvolved, these modes have dominate influence to the
response. In fact, most engineering applications only require to consider
the first mode. Therefore, information from the higher modes may be lost

in the response.

Secondly, despite the measured response being assumed noise-free, noise
can not be completely eliminated. The commonly used nolise-reduction
techniques in response-fitting are essentially pre-treatments such as
averaging the noise in the frequency domain. Since the particlipating
factors of higher modes are relatively small, these modes give poor
cignal-to-noise ratios. The existence of these modes can hardly be

identified in a response function. Consequently, the order of the
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reference can not be determined by the response-fitting method unless more
sophisticated time domain modal analysis is used. It is conceivable that
without prior knowledge of the reference order, response-fitting is more
likely to accept a degenerate model with only the first few modes of the

real structural system.

Thirdly, the higher modes decay faster than the lower modes in a frce

decay response. This may also induce the problem of losing information

from the higher modes in a recorded response.

ExaMpLe 1: Figure 1 (a) shows a five story structure. This model steel
frame is considered to have at least fifteen degrees-of-
freedom. A free decay time history measured at a point on the
third floor of the frame is shown in Figure 1 (b}. Two other
responses are also given here. They are calculated responses
from two analytical models one with 2 DOF the other with 3 DOF.
Although the 15 DOF structure should not be treated as a 2 or 3
DOF system, by using response-fitting, we could have accepted the
2 or 3 DOF analytical model as the real physical model.

FREQUENCY-FITTING

Frequency-fitting is another commonly applicable method for model
corrections. The reference in this method is the measured natural
frequencies which are eitﬁer obtained directly from vibration test or
extracted through modal analysis. The two ways give damped and undamped
natural frequencies respectively. The number of the natural frequencies
collected in the reference corresponds to the order of the structural
system. So there has no problem In determining the number of modes in the

system. The cost function is given by
n
J = Z @ (wim) - wia))2 (2)
1=1
where wim) and wia) are the measured and calculated undamped natural

frequencies of the 1*" mode respectively. « are the corresponding
weighted coefficients. Since this method utilizes information from all

relevant natural frequencies, which have been accurately measured, it has
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better overall performance over the response-fitting method. Especially,

frequency-fitting is sultable for correcting models with many higher modes

Equation (2) can be further modified by inciuding both the natural

frequencies and the damping ratics in J.
n
J = £ alw
=1
where E:') denotes the ™" damping ratio of (m) or (a). This improved

(o)

2
X )

_ wia) . B!( g(m) - E(zt))2 (3)

i i

Equation (3) is suitable for correcting models demanding high accuracy for

both natural frequencies and damping ratlos.

A useful variation of the above method is the less accurate FRF curve-

fitting technique. Similar to Equation (1), the cost function in this

case is

Jo= T oa (g™ - ) (4)
1=1
where fiJ is the 1" sample taken from the reference FRF (m) or the
analytical FRF (a). p is the total number of samples. Selection of welghted
coefficients is empirical. If the FRF samples are collected from a forced
response with a feedback controlled excitation whose input spectrum has

been kept a straight line, then « are the same for all {1 =1, ..., n.

In using Equation (2), a correspondence between the referential and the

analytical frequencles must be established first. One such correspondence
is described below.

Consider the two sets of natural frequencies

{ ui“’l t=1, ...,n) and { wi" lJ=1, ....n}.
First, arrange them by a linear ordering
w(m) < w(m) < w(m) s s w(m)
i i i i
1 2 3 n
(5)
w(a) < w(a) < u(a) < s w(a)
Jl J2 J3 Jn
where the subscripts are some permutations of 1, 2, ..., n. Then the

frequencles are paired according to the ordering. With this one-one

DCC-6




correspondence, Equatlion (2) can be restated as

( 2 (m) (a),2 {m) (a),2
J=al w ™ u(°)) va(w™ =) v (™ -0
1 1 ] 2 { J n

1 1 2 2 1n Jn
Such a correspondence has the nice mathematical property that it gives the
cost function J the smallest value when the weighted coefficlents in

Equation (2) are the same.

There are some problems with response-fitting method too. This can be seen

from the following example.

ExaMPLE 2: A 4 DOF structure is shown in Figure 2 (a). Its physical model
and an analytical model have the generalized damping and stiffness
matrices as given in Table 1 (a), (b) respectively. Figure 2 (b)
gives two FRF's, in which the dotted curve is from the physical

model and the dashed curve is from the analytical model.

Table 1 (a) Generalized Damping Matrices M™'C

Physical Analytical
27.3598 -~18.2436 -22.8993 24.2555 | 6.3384 -1.3278 -1.2876 0.6308
32.2713 1.7445 -23.1446 3.1574 -0.7730 -1.18%94
43.2177 -32.4571 3.1408 -1.6335
49.1511 2.5634

Table 1 (b) Generalized Stiffness Matrices M 1K 1,000 x

Physical Analytical
8.3284 -2.7138 -2.8032 2.3111 8.3130 -2.7085 -2.5973 2.3056
1.8560 0.1288 -0.8413 1.8549 0.1266 -0.8398
2.3377 -1.5225 2.3361 -1.5209
1.4618 1.4807

Tt 1s ciear that the generalized damping matrices of these two models are
quite different. In fact, the physical model is non-propertionally damped
whereas the analytical model is proportionally damped. ( most finite
element algorithms only generate proportionally damped models ).

Consequently, the mode shapes of these two models are different. The first




model has complex-valued mode shapes but the second has only real-valuea
ones. Such differences can not be detected in a single pair of frequency
response functions. Therefore, curve-fitting FRF or frequency-fitting is
inadequate for correcting errors in such category. This is seen in Figure
2 (b), where, in spite of the aforementioned differences between the two

models, the two FRF still appear to be close.

COMPLETE MODAL-FITTING

A more sophisticated fitting method is developed by include the mode shape

influences into the cost function, namely
n

1 =5 c(l((‘)im) _ {a) )2*3‘( €tm) _gfa))z
1=1 )
(m) (a) \H (m) (a)
+ P, - P ) I‘l( P, - P ) (6)
where piJ is the {*h mode shape, and Fl is a diagonal matrix which consis:s

of welghted coefficients. A simplified version of Equation (8} is
n

J = £ a (w
TS 1
1=1

(m) (a) 2
- W

)

(m) (a) \H ., _(m) (a).
+(pn_a) ‘ m~a)

i (7
1 i i 1 {

Slnce the complete set of modal parameters is employed in Equation (6), it
ie called the complete mcdal-fitting. However, complete modal-fitting does
not always give a satisfactory correction to an analytical model. One
problem is related to the mode shapes. For example, the error in a
measured mode shape could reach as high as 500%. (Liang & Inman 1988).
Under this circumstance, the welighted coefficients Fl must be assigned
with very small values. Therefore, the modification effect from mode

shapes is limited.

WEAKNESS OF AVAILABLE CORRECTION METHODS

In the preceding sections, we briefly reviewed some commonly used model
correction procedures. None of these methods is sufficient in terms of the
correction effectiveness. There are certain types of errors in the

anslytical model that may not be eliminated through the model corrections.
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One of the shortfalls is that the cost function J is based on numerical
Judgments of some necessary but not sufficient properties of the model.
Therefore, no matter how small the value of J could be reduced to, the
correction effect still may not be greatly improved. In addition, there
exist possible experimental errors as well. So it 1is necessary to

establish more suiteble criteria for evaluations of the correction effects.

The goal of model correction is to obtain the correct M, C, and K matrices.
However, in many engineering applications, it is the properties of the
structural system that are of our interests. As described at the
introduction section, using the M-C-K model we can calculate these
system’s properties. On the other hand, when some of the properties ‘he
systems are known such as the order of the system, they may be used in
model corrections. Fcllowling this line of thought, we can czcnsider and
treat model correction on the basis of its ability of preserving system
properties in addition to its ability to satisfy the prescribed numerical
criteria such as cost function J. Since there is no single property

of the system that is strong enough to guarantee the correctness of the
physical model (at least it ls the case at present), the best analytical

model is the one tha. preserves most properties of the system.

CORRECT CORRESPONDENCE AND ITS INTERPRETATION IN MODFI. CORRFECTYNNS

Conslder again the S-story structure shown in Figure 1 (a). A diagrammatic
finite element representation generated according to the real measurements
is shown in Figure 3 (a). In Figure 3 (b) and (c), the modal deformations
of the first and second modes of the structural system are illustrated.
Figure 3 (b) shows a simple translational mode and Figure 3 (c) shows a
simple torsional mode. In more complicated situations, modes of the
structural system may not be as simple as the cnes given in these figures.
Nevertheless, they possecs Aistinct mcdal defsrmations, which are Lhe
most basic dynamic performances of the structural system. Since the
structural system for testing is also the object for finite element
modeling, the modal deformations of the modes obtained from the two
approaches should be essentially the same, despite of numerical

disparities due to the errors of measurements and calculations. Based cn




this observation, we investigate in the following some possible model
correction methods that make the revised analytical model preserve similar

modal deformations as the real structural systenm.

The invariance of modal deformations for the modes in both physical and
analytical models can be characterized by the correct correspondence
between the modes (system eigenvalues and system eigenvectors) of the two
models. Conceptually, it is easy to understand that such a correspondence
should relate the modes with similar deformations to each other. To
establish such correspondence however, we have to define the correct
correspondence in terms of model clements. In usual, the stiffness K and
the mass M of the analytical model are obtained with more accuracy than
damping matrix C, a correct correspondence can be obtained easily between
the stiffness eigenvalues of the physical and analytical models. Since
each individual mode is dominated by an unique stiffness eigenvalue, we
can achleve the correct correspondence of modes of the physical and
analytical models by first pumbering the mcdes in each model with respect
to the given subscripts of the stiffness eigenvalues in that model, and
then relate the modes according to the correct correspondence between the

stiffness eigenvalues of the two models.

Examine the governing equation

MX + CX + KX = F (8)
where M, C and K are mass, damping and stiffness matrices respectively.
Vectors X, k, X and F denote the acceleration, velocity, displacement and
forcing function respectively. In free vibration, F is zero. Equation (8
becomes

MX + CX + KX = 0 (9)
Applying some matrix operations to Equation (8), we obtain the following
D-Ak model

IY + DY + AY =0 (10)
where I 1s an identity matrix, aud Vv = 0 M 73X
o ’l
D= an-l/zc M-x/zq and AI: QH'l/zKH'llzo - w, \’
j 2
wnj
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Q is an orthogonal matrix. This is called the canonical vibration model (
Liang et al 1990 ). Its advantage over the general vibration model (38) lies
in the simplification of M and K matrices. With Ak diagonal, the stiffness
eigenvectors In this model are always e { the unit vectors ) i =1, 2,

n. Now we discuss how to number the modes with respect to subscript 1.

In the case of a proportionally damped system, it is known that Caughey’'s
criterion (Caughey, 1978)

DA=AD (11)

X K

is satisfied. Using Equation (11), we can find an orthogonal matrix R. By
applying R from the left and the Hermitian transpose of R from the right
to Equation (1Q), we have a canonical model with both RDR" and RAkRH
diagonal. Such a system 1s completely decoupled. There are n separate
single DOF equations each of which corresponds to a mode of the system.
The numbering is easily determined in the w2y that the eigenvalue of the
L th :
i equation,

y.* dxy1+ YT 0
is assigned with subscript i.

Let Al. Az’ cee An denote the systzm eigenvalues and P pz. cen P
denote the mode shapes of an canonical model. A recent result by Liang et
al (1990) offers another convenient way to obtain the numbering. The result
unfolds the following property of a proportionally damped system

rxX=0® i=1,2 ..., n (12)
where w? is the ith elgenvalue of the stiffness matrix. The subscript 1 in
(12) enumerates the system eigenvalues such that it gives an one-one
correspondence between the system eigenvalues A and eigenvalues w? of the
stiffness matrix. Since the inverse of this result is also valid, a system
satisfying (12) 1s automatically proportionally damped and possesses the

desired numbering.

Using complex-damping coefficients, the above numbering can be justified

in terms of the system energy relations. By definition, a complex-damping

coeffliclent is a generalized Rayleigh quotient




where q, is an eigenvector of stiffness matrix, P, is a system eligenvector.
a and b‘ are the real and imaginary parts of . ;or a different numbering
of the system’s modes, we usually get a different set of corresponding
complex-damping coefficlients. Otherwise the generalized Rayleigh quotients
are not defined at all. As reported by Liang and Lee (1980), there is one
correct set of complex-damping coefficients which can be used to describe
the energy transformations among the modes of a vibration system. In their
report a complex damping ratio H, is defined as

weo= a / 2w g *3¢§
wnere w, is the 1P undamped natural frequency and !;'1 is the 1"h damping

ratio. The cl is a ratio of the energy transformed in a cycle over the
total energy stored before the cycle in the 1*? mode. If Ci is zero, M,
has no imaginary part. Thus there is no energy transformed into or out of
the 1*" mode. Consequently, such a mode can be decoupled from the system.
By this theory, the set of correct complex-damping coefficients for a
proportionally damped canonical vibration model is a set of real-valued
scalars, because in such model every mode can be decoupled. This condition
is satisfied by the complex-damping coefficlents calculated with the
numbering described earlier. In fact, this numbering is the only one that
satisfies the requirement qiT P %2 0, for complex-damping coefficlients.
1
For non-proportionally damped systems, the correct numbering is also
associated with the correct set of complex-damping coefficients, which
describe the energy transformations among the coupled modes. Although a
natural generalization of the numbering discussed for proportionally

damped systems, namely relating a stiffness eigenvalue wz with a closest

AX , is not correct in general for non-proportionally damped systems, (see
Tong et al), given the correct set of complex-damping coefflicients, the
correct numbering is shown to be unique (see Tong et al). Therefore, we

can search the correct numbering from the complex-damping coefficlents.
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By using the correct ~orrespondence of modes in model corrections,
tndividual modes in the corrected model preserve their deformations. In most
cases, we may produce a model having similar energy transformation pattern

to the physical model. Due to the limit of space, we omit the examples.

COMPLEX DAMPING FITTING AND EIGEN-MATRIX FITTING

The firzt Wty te improve the correctlon procedures is to use the complex-
damping coefficients to determine the correct correspondence. The imaginary
part of a complex-damping ratio satisfles
w = w  exp (Cx)' i=1,2, ..., n (13)
1
when the system is lightly damped, i.e.
| M t s0.3, 1=1,2, ..., n (14)

Equation (14) is satisfied with most engineering structures.

In Equation (14), w_ is the square root of the r:h eigenvalue of the
1
generalized stiffness matrix, where Ty is a designated permutation of

1, 2, ..., n. Thus, by using equation (14) and M ., we can determine the
correct correspondence quantitatively.
We precpose a improved model correction criterion as follows.

n
) )\ 2 (a),2
J = X al(w:m - wia )° o+ f31 ( Eim) - & T )T+

(m) (a) 2 (m) (a) H () (a)
- ) (p

7, g g, +Cp-p ) Cp 7 -p ) (15)

where ¥, are weighted coefficients for least square approximation of ratio

q"’. The term ( c(m)- Cu))2 is a good monitor of non-proportiocnality.

1 1
With the complex-damping ratios avallable and the systems considered being

lightly damped, The correct correspondence can be solved from Equation (13).

A second approach to deal with correct correspondence is to avoid using
the modal parameters mode by mode. Instead we can use a more general
convergence pattern so that the correct correspondence is assured through
the convergence. In this regard we have a cholce of either using the state
matrix or using the eigen-matrix. Because the size of the state matrix is

2nx2n, (supposing the order of the system is n), we consider the eigen-
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matrix whose size is only nxn.

A elgen-matrix A Is defined by

A=P AP (16)
where A is a diagonal matrix consists of all eigenvalues Xl , 1 =1,...n,
of the system, and

- - . B 1/2
Al E‘ w * Jo1 Ex) w, (17)

A matrix A has the eigen-decomposition (16}, If and
only if A satisfles the following quadratic matrix equation:

MA> +CA+K=0 (18)
where the coefficient matrices M, C and K are defined as in Equation (8).
From Equation (18), we can see intultively, that convergence of an eigen-
matrix A involves global adjustments of all modal parameters Therefore,
the problem of correspondence will not occur here. The cost function can
be established by

(m}

J o= A'™o Ay (19)

(a)

where i . Il stands for a norm of matrix A(m)- A For example, it can

be the Frobenius norm,

n n
J=u A=Ay = (z £ |a
F i=1 J=1
where a:f is the ijth entry of matrix A

(m) )., 2 (12
mi e(a! }
1) 1)

{.)

(20)

. Or it can be a p~norm, such
as the 2-norm,
J = HA

(m)ﬂ_ (a) {

A o= (m) (a) H, , (m)
2

A AT - A7) (A

maA X

_ A(a))] }1/2

(21)

where Amax[.] is the maximum eigenvalue of matrix [.]

CONCLUDING REMARKS

In this paper, we first examined several model correction procedires

and their common weaknesses. Most available methods emphasize the speed of
numerical convergence. In this study we pay attention to the validity of
the corrections. We suggested methods to improve some of correction
procedures by using the correct correspondence between the modes of
physical and analytical models. This study results in the improvement of
finite element modeling. It is also shown that a strong connection exist
between the theoretical studies such as the complex damping theory and

the various practical applications.
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